

casio 월드 와이드 교육 웹사이트 http://edu.casio.com

나중에 참고할 수 있도록 모든 사용자 문서는 바로 사용할 수 있는 곳에 보관하십시오.

RJA532528-001V01

목차

2
2
2
3
1
5
5
7
)
)
2
5
)
) 7
7
2
) 1
ו כ
í S
) 5
י ג
7 7
3
ŝ
)
1
1
1
3
3
3
)
)

어떤 경우라도 CASIO Computer Co., Ltd. 는 본 제품 및 부속된 항목의 구입 또는 사용에 관련되거나 그것으로 유발되는 특수하거나, 부수적이 거나, 우발적이거나 결과적인 손해에 대해서 일체의 책임을 지지 않습니 다.
또한, CASIO Computer Co., Ltd. 는 본 제품 및 부속된 항목의 사용으로 제 3 자에게 발생하는 어떤 종류의 청구에 대해서도 책임을 지지 않습니 다.

본 설명서에 대해

- 특별히 지정되지 않은 경우, 본 설명서의 모든 샘플 조작은 계산기가 초기 설정인 것으로 가정합니다. "계산기 초기화하기"의 절차를 이용해서 계 산기를 초기 설정으로 되돌립니다.
- 본 설명서의 내용은 예고없이 변경될 수 있습니다.
- 본 사용설명서에서 설명하는 표시와 그림(예: 키 표시)은 설명을 위한 것이 며, 실제 표시되는 항목과 다를 수 있습니다.
- 본 설명서에 사용되는 회사명 및 제품명은 각 소유자의 등록상표 또는 상 표일 수 있습니다.

계산기 초기화하기

계산기를 초기화하고 계산기 모드 및 설정(Contrast 설정은 제외)을 초기 상태 로 되돌리려는 경우에는 아래의 절차를 수행하십시오. 이 조작은 현재 계산기 메모리에 들어있는 모든 데이터도 삭제한다는 것에 유의해 주십시오. SHIFT 9(RESET) 3 (Initialize All) = (Yes)

주의사항

안전상의 주의사항

- 전지는 유아의 손이 닿지 않는 곳에 보관해 주십시오.
- 본 설명서에서 계산기용으로 지정된 전지 종류만을 사용해 주십시오.

취급상 주의 사항

- 계산기가 정상적으로 작동하더라도 적어도 3년(LR44) 또는 2년 (RO3(UM-4)에 한 번은 전지를 교환해 주십시오. 소모된 전지는 전지액이 누설되어 계산기에 손상을 주거나 동작 불량의 원인이 됩니다. 절대로 계 산기에 소모된 전지를 넣은 채로 방치하지 마십시오. 전지가 완전히 소모 된 때에는 계산기를 사용하려 하지 마십시오(fx-991EX).
- •계산기에 부속된 전지는 선적 및 보관 중에 조금씩 소모됩니다. 그 때문에 소정의 전지 수명에 못 미치어 전지를 교체해야 할 경우도 있습니다.
- 극단적인 온도 조건이나 습기나 먼지가 많은 장소에서의 계산기의 사용 및 보관은 피해 주십시오.
- •계산기에 과도한 충격을 주거나 압력을 가하거나, 또는 구부리지 마십시 오.
- •절대로 계산기를 분해하려 하지 마십시오.
- •계산기의 외부를 청소할 때에는 부드럽고 마른 천을 사용해 주십시오.
- •계산기 또는 전지를 폐기할 때에는 거주하는 특정 지역의 법률 및 규정에 따라 해 주십시오.

시작하기

계산기를 사용하기 전에 하드 케이스를 아래쪽으 로 밀어서 제거한 후, 그림과 같이 계산기의 뒤쪽으 로 하드 케이스를 부착해 주십시오.

전원 켜기 및 끄기

☞ 을 눌러서 계산기의 전원을 켭니다.
 ☞ ▲ (OFF)를 눌러서 계산기의 전원을 끕니다.

주의: 또한 계산기를 사용하지 않고 약 10분이 지나면 자동으로 꺼집니다. ₪ 키를 눌러서 계산기의 전원을 다시 켜 주십시오.

표시 콘트라스트 조정하기

아래의 키 조작을 수행하여 Contrast 화면을 표시합니다: ☞ ♥ ♥ (SETUP) ▲ ③ (Contrast). 다음으로, ④ 및 ●을 사용하여 콘트라 스트를 조정합니다. 원하는 대로 설정된 후에, № 을 누릅니다. 중요: 표시 콘트라스트를 조정해도 표시의 판독이 향상되지 않는 경우에는 전 지 용량이 낮은 것일 수도 있습니다. 전지를 교환해 주십시오.

키 표시

 Imm
 키를 누른 후 두 번째 키를 누르면 두 번째 키의 대
 (2)

 체 기능을 실행합니다. 대체 기능은 키 위에 인쇄된 텍스트로 표
 (2)

 시됩니다.
 Imm

(1) 키캡 기능 (2) 대체 기능

색상:	의미:
황색	SHET 을 누른 후, 해당 기능에 액세스할 키를 누릅 니다.
적색	때 누른 후, 해당 변수, 상수, 함수 또는 기호를 입 력할 키를 누릅니다.
보라색 (또는 보라색 Г٦ 괄호 내)	Complex 모드로 들어가서 기능에 액세스합니다.
파란색 (또는 파란색 Γ٦ 괄호 내)	Base-N 모드로 들어가서 기능에 액세스합니다.

표시 읽기

(1) 입력식(2) 계산 결과(3) 인디케이터

- ▶ 또는 ▷ 인디케이터가 입력 식 줄 또는 계산 결과 줄의 우측에 표시되는 경우에는 표시된 줄이 우측으로 계속된다는 것을 의미합니다. ▶ 및 ④
 을 사용하여 줄 표시를 스크롤하십시오. ▶ 및 ▷ 인디케이터가 표시된 때에 입력식을 스크롤하려는 경우에는, ▲ 을 먼저 누른 후에 ▶ 및 ④을 눌러 서 스크롤해야 합니다.
- 아래의 표는 화면 상단에 나타나는 대표적인 몇몇 인디케이터를 나타냅니 다.

S	키를 눌러서 키패드가 시프트되었습니다. 키를 누르면 키 패드가 시프트되지 않으며 본 인디케이터가 나타나지 않습니 다.
А	IPPA 키를 눌러 알파 입력 모드가 입력되었습니다. 무엇인가 다른 키를 누르면, 알파 입력 모드로부터 빠져나오며 이 인디 케이터는 사라집니다.
D/R/G	Angle Unit의 현재 설정 (D : Degree, R : Radian, 또는 G : Gradian)을 설정 메뉴에 나타냅니다.
FIX	소수점의 자리수가 설정됩니다.
SCI	유효 숫자의 자리수가 설정됩니다.
М	독립 메모리에 저장된 값이 있습니다.
→ <i>X</i>	계산기가 변수에 값을 설정하기 위해서, 변수명의 입력을 기다 리는 상태입니다. 🗺을 누르면 이 인디케이터가 표시됩니다.
	MathI/MathO 또는 MathI/DecimalO이 설정 메뉴의 Input/ Output에서 선택되었음을 나타냅니다.
	현재 표시는 멀티-스테이트먼트 계산의 중간 결과를 나타내고 있습니다.
¢.	이 인디케이터는 계산기가 태양 전지로만 전원을 공급받거나 태양 전지와 배터리를 조합하여 전원을 공급받을 때 표시됩니 다. (fx-991EX만 해당)

메뉴 사용하기

이 계산기의 일부 조작은 메뉴를 사용해서 실행합니다. 메뉴를 표시하려면 @TN 또는 FT 및 @EN (SETUP)을 누릅니다. 일반적인 메뉴 조작이 아래에 설 명되어 있습니다.

 메뉴 화면의 좌측에 있는 숫자에 해당하는 숫자 키를 눌러서 메뉴 항목을 선택할 수 있습니다.

- 세로 스크롤 막대 (1)는 메뉴가 화면을 벗어남을 나타냅니다. 이 경우,
 및 ▲을 사용하여 메뉴를 위와 아래로 스크롤할 수 있습니다. 왼쪽 화살표
 (2)는 현재 표시된 메뉴가 하위 메뉴임을 나타냅니다. 하위 메뉴에서 상위 메뉴로 돌아가려면, ④을 누릅니다.
- 아무런 선택도 하지 않고 메뉴를 닫으려면 🚾을 눌러 주십시오.

계산 모드

실행하려는 계산 종류에 적합한 계산 모드를 지정합니다.

- 1. 을 눌러서 기본 메뉴를 표시합니다.
- 커서 키를 사용하여 원하는 아이콘으로 강 조 표시를 이동합니다.

이 경우:	이 아이콘 선택:		
일반계산	(Calculate)		

복소수 계산	€∠ (Complex)
특정한 숫자 체계(2진수, 8진수, 10진수, 16진수)를 포함하는 계산	28 1016 (Base-N)
행렬 계산	(Matrix)
벡터 계산	(Vector)
통계 및 희귀 계산	(Statistics)
분포 계산	
스프레드시트 계산	(Spreadsheet)
하나 이상의 함수에 따라 수치표를 생성 합니다	(Table)
방정식 및 함수 계산	(Equation/Func)
부등식 계산	(Inequality)
비율 계산	□:□ (Ratio)

입력 및 출력 형식

계산기에서 계산을 시작하기 전에, 먼저 아래 표의 조작을 사용하여 계산식 입력 및 계산 결과 출력에 적용할 형식을 지정해야 합니다.

입력 및 출력의 형식을 지정하려면:	[배町 通제 (SETUP) (네 (Input/ Output)을 누르고 다음을 누 릅니다:		
입력: 자연수 텍스트북; 출력: 분수, √ 또는 π*¹가 포함된 형식	1 (Mathl/MathO)		
입력: 자연수 텍스트북; 출력: 10진수 값으로 변환됨	2 (Mathl/DecimalO)		
입력: 리니어*²; 출력: 10진수 또는 분수	3 (Linel/LineO)		
입력: 리니어*²; 출력: 10진수 값으로 변환됨	(Linel/DecimalO)		
*1 어떤 이유로 이들 형식을 출력할 수 없는 경우에는 10진수 출력이 적용됩			

- 1 여진 이유도 이들 영식을 물덕을 수 없는 경우에는 10신수 물덕이 식용됩니다. 비다. *2 보스 미 하스를 표하하 모든 게상은 하 중에 이려되니다. 자여스 테스트보
- *2 분수 및 함수를 포함한 모든 계산은 한 줄에 입력됩니다. 자연수 텍스트북 표기가 없는 모델(S-V.P.A.M. 모델 등)의 형식과 동일한 출력 형식

Input/Output 형식 표기 예

Mathl/MathO

계산기 설정하기

계산기 설정을 변경하려면

- 1. 5배 (SETUP)을 눌러서 설정 메뉴를 표시합니다.
- 2. ♥ 및 ▲을 사용하여 설정 메뉴를 스크롤한 다음, 설정을 변경하려는 항 목의 왼쪽에 표시된 숫자를 입력합니다.

항목 및 사용 가능한 설정 옵션

"◆"은 초기 설정을 나타냅니다.

Input/Output① Mathl/MathO*;② Mathl/DecimalO;③ Linel/LineO;④ Linel/DecimalO계산기가 식 입력 및 계산 결과 출력에 사용할 형식을
지정합니다.

```
Angle Unit 1 Degree<sup>◆</sup>; 2 Radian; 3 Gradian 값 입력 및 계산 결과
표시를 위한 각도 단위로 도, 라디안 또는 그래디언트를 지정합니다.
```

Number Format 계산 결과를 표시하기 위한 자릿수를 지정합니다.
① Fix: 지정한 수치(0 에서 9)로, 표시되는 계산 결과의 소수점 이하의 자리 수가 결정됩니다. 계산 결과는 표시 전에 지정된 자릿수에서 반올림합니다.
예: 100 군 7 ☞ 囯(≈)* 14.286 (Fix 3)
② Sci: 지정한 수치(0 에서 9)로, 표시되는 계산 결과의 유효 자리수가 결정됩니다. 계산 결과는 표시 전에 지정된 자릿수에서 반올림합니다.
예: 1 군 7 ☞ 囯(≈)* 1.4286 × 10⁻¹ (Sci 5)
③ Norm: 아래 범위에 들어가는 경우 지수 형식으로 계산 결과를 표시합니다.
① Norm 1*: 10⁻² > |x|, |x| ≥ 10¹⁰, ② Norm 2: 10⁻⁹ > |x|, |x| ≥ 10¹⁰

예: 1 ๋ 200 町 ☰(≈)* 5 × 10⁻³ (Norm 1), 0.005 (Norm 2) * 계산을 입력한 후에 ☰ 대신에 町 ☰(≈) 를 누르면 계산 결과를 소수점 표시로 나타냅니다.

Engineer Symbol ① On; ② Off* 공학 기호를 사용하여 계산 결과를 표시할지 여부를 지정합니다. 주의: 이 설정에 On이 선택된 동안에는 인디케이터 (E)가 화면 상단에 표시됩 니다. Fraction Result 1 ab/c; 2 d/c • 계산 결과에 분수를 표시하기 위해 대 분수 또는 가분수를 지정합니다.

Complex ①*a*+*bi*[•]; **②***r∠θ* Complex 모드 계산 결과 및 Equation/Func 모드 해에 대해 직교 좌표 또는 극 좌표를 지정합니다.

주의: Complex 설정에 *a*+*bi*가 선택된 동안에는 *i* 인디케이터가 화면 상단에 표시됩니다. *r∠θ*가 선택된 동안에는 ∠이 표시됩니다.

Statistics 10n; 20ff • Statistics 모드 통계 편집기에서 Freq (도수) 열을 표시할지 여부를 지정합니다.

Spreadsheet Spreadsheet 모드 설정을 구성하는 경우.

① Auto Calc: 식을 자동으로 재계산할지 여부를 지정합니다.

① On*; ② Off 자동 재계산을 활성화 또는 비활성화합니다.
 ② Show Cell: 편집 상자의 식이 그대로 표시되어야 할지 또는 계산 결과 값으로 표시되어야 할지 여부를 지정합니다.

I Formula⁺: 식을 그대로 표시합니다.

2 Value: 식의 계산 결과 값을 표시합니다.

Equation/Func 10n⁺; 20ff Equation/Func 모드에서 해 출력에 복 소수를 사용할지 여부를 지정합니다.

Table ①*f*(*x*); **②***f*(*x*),*g*(*x*) ← Table 모드에서 함수 *f*(*x*)만 사용할지 두 함수 *f*(*x*) 및 *g*(*x*)를 사용할지 여부를 지정합니다.

Decimal Mark 1 Dot*; 2 Comma 계산 결과 소수점 기호에 점(.)을 표시할지 콤마(,)를 표시할지를 지정합니다. 입력 중에는 항상 점으로 표시됩니다.

주의: 소수점 기호로 점(.)을 선택한 경우에는 다수의 결과에 대한 분리기호는 콤마(,)입니다. 콤마(,)를 선택한 경우에는 분리기호가 세미콜론(;)입니다.

Digit Separator ①On; ②Off ● 분리기호 문자를 계산 결과에 사용할지 여부를 지정합니다.

MultiLine Font ① Normal Font⁺; ② Small Font Input/Output에 Linel/LineO 또는 Linel/DecimalO이 선택된 경우 표시 글꼴 크기를 지정합니 다. Normal Font가 선택된 경우 최대 4줄을 표시할 수 있고, Small Font에서는 최대 6줄을 표시할 수 있습니다.

 QR Code
 Implication
 (QR)을 누를 때 표시되는 QR 코드의 버전을 지정합니다.

 ① Version 3: QR 코드 버전 3을 나타냅니다.
 ② Version 11*: QR 코드 버전 11을 나타냅니다.

계산기 설정을 초기화하려면(Contrast 설정은 제외) 5배키 9(RESET) 1(Setup Data) = (Yes)

식 및 값 입력하기

기본 입력 규칙

글을 누르면 입력 계산의 우선 순위가 자동으로 평가되어서 결과가 표시됩니
 다.

 $4 \times \sin 30 \times (30 + 10 \times 3) = 120$

4×sin(30)×(30+10)⊳
120

- *1 괄호를 포함하는 sin 및 기타 함수에 대해서는 끝 괄호를 입력할 필요가 있습니다.
- *2 이들 승산 기호(x)는 생략할 수 있습니다.

*3 🖃 조작 직전의 끝 괄호는 생략할 수 있습니다.

주의

- 현재의 남은 입력이 10 바이트 이하로 되면 커서는 형태로 바뀝니다. 이 런 경우에는 계산 입력을 종료한 후 三을 눌러 주십시오.
- 승산 기호가 생략된 승산 및 제산 조작이 모두 포함된 계산을 실행하는 경우, 아래의 예와 같이 괄호가 자동으로 삽입됩니다.
 - 시작 괄호 바로 앞 또는 끝 괄호 바로 뒤에 승산 기호가 생략된 경우.
 예: 6 ÷ 2(1 + 2) → 6 ÷ (2(1 + 2))
 변수, 상수 등의 바로 앞에 승산 기호가 생략된 경우.
 - $\Theta : 2 \div 2\sqrt{2} \to 2 \div (2\sqrt{2})$

계산 우선 순위

입력된 계산의 우선 순위는 아래와 같은 규칙으로 정해집니다. 두 식의 우선 순위가 동일한 경우에는 계산이 좌측에서 우측으로 실행됩니다.

1	괄호식
2	괄호가 있는 함수 (우측에 인수가 있고 인수 뒤에 끝 괄호가 필요한 함 수 sin(, log(등의 함수)
3	입력 값 뒤에 오는 함수 (x², x³, x⁻¹, x!, °'", °, ^r , ^g , %, ▶t), 공학 기호 (m, μ, n, p, f, k, M, G, T, P, E), 누승 (x [∎]), 루트 ([∎] √□)
4	분수
5	마이너스 기호 ((-)), <i>n</i> 진 기호 (d, h, b, o)
6	단위 변환 명령 (cm▶in 등), Statistics 모드 추정값 ($\hat{x}, \hat{y}, \hat{x}_1, \hat{x}_2$)
7	승산 기호가 삭제된 곳의 승산
8	순열 (<i>n</i> Pr), 조합 (<i>n</i> Cr), 복소수 극 좌표 기호 (∠)
9	내적 (•)
10	승산 (×), 제산 (÷)
11	가산 (+), 감산 (-)
12	and (논리 연산자)

13 or, xor, xnor (논리 연산자)

자연수 텍스트북 형식을 사용하여 식 입력하기 (Mathl/ MathO 또는 Mathl/DecimalO에만 해당)

분수 및/또는 √ 와 같은 특수 함수를 포함하는 식 및 공식을 자연수 텍스트북 형식으로 입력하려면, 특정 키를 누를 때 나타나는 템플릿을 사용할 수 있습 니다.

6: $3\frac{1}{2} + 5\frac{3}{2}$

- 1. 5페 團(■믐)을 누릅니다.
 - 그러면 대분수 템플릿이 입력됩니다.
- 2. 템플릿의 정수, 분자 및 분모 영역에 값을 입력합니다.

3 (•) 1 (•) 2

 $3\frac{1}{2}$

 $3\frac{1}{2}+5\frac{3}{2}$

10

3. 동일한 동작을 수행하여 식의 나머지 부분도 입력합니다.

▶ + SHET = (-==) 5 ≥ 3 ≥ 2 =

조언: 입력 커서가 템플릿 (대분수, 적분 (∫), 및 합계 (Σ))의 입력 영역 내에 있는 중에, 爾 ▶을 누르면 템플릿의 바로 다음(오른쪽) 위치로 점프하는 반 면, 💵 ④을 누르면 템플릿의 바로 앞(왼쪽) 위치로 점프합니다.

주의

- 글를 누르고 계산 결과를 얻은 경우에는 입력한 식의 일부가 잘릴 수 있습 니다. 전체 입력식을 다시 볼 필요가 있는 경우에는, 🚾을 누른 후 🗨 및 응 사용하여 입력식을 스크롤하십시오.
- 함수와 괄호를 연결 사용할 수 있습니다. 함수 및/또는 괄호를 너무 많이 연 결 사용하면 더 이상 입력할 수 없게 됩니다.

조작을 취소하려면 (Mathl/MathO 또는 Mathl/DecimalO에만 해당): 마지막 키 조작을 취소하려면, 🋲 🖭 (UNDO)을 누릅니다. 방금 취소한 키 조작을 다시 실행하려면, APPA 0 (UNDO)을 다시 누릅니다.

값 및 식을 인수로 사용하기(Mathl/MathO 또는 Mathl/ DecimalO에만 해당)

예: $1 + \frac{7}{6}$ 을 입력하고 다음으로 변경하려면 $1 + \sqrt{\frac{7}{6}}$

위의 예에서 페 🖭 (INS)을 누르면, <mark>7</mark>은 다음 키 조작에 의해 입력된 함수 (√)의 인수가 됩니다.

덮어쓰기 입력 모드 (Linel/LineO 또는 Linel/DecimalO에 만 해당)

덮어쓰기 모드에서는 입력한 텍스트가 현재 커서의 위치에 있는 텍스트를 대 체합니다. 다음 조작으로 삽입 및 덮어쓰기 모드간을 변환할 수 있습니다: SHET DEL (INS). 커서는 삽입 모드에서 "I"로 표시되고, 덮어쓰기 모드에서는 _" 로 표시됩니다.

계산 결과 변환하기

MathI/MathO 또는 MathI/DecimalO가 설정 메뉴의 Input/Output에서 선택된 중에, 🗺 을 누를 때마다 현재 표시되는 계산 결과가 분수 표시와 소수점 표 시, √ 표시와 소수점 표시, 또는 π 표시와 소수점 표시 간에 변환됩니다.

 $\pi \div 6 = \frac{1}{6}\pi = 0.5235987756$ (Mathl/MathO)

 $\texttt{SHIFT} \times \mathbb{O}^{\mathbb{I}}(\pi) \stackrel{\bullet}{\bullet} 6 = \frac{1}{6}\pi \quad \leftarrow \texttt{SHD} \rightarrow \quad 0.5235987756$

 $(\sqrt{2} + 2) \times \sqrt{3} = 5.913591358 = \sqrt{6} + 2\sqrt{3}$ (Mathl/DecimalO)

 $(\sqrt{2} 2) + 2) \times \sqrt{3} = 5.913591358 \leftarrow \mathbb{S} \rightarrow \sqrt{6} + 2\sqrt{3}$

설정 메뉴의 Input/Output에 무엇이 선택되었는지 상관없이, 500을 누를 때마 다 현재 표시되는 계산 결과가 소수점 표시와 분수 표시 간에 변환됩니다. 중요

- 특정 계산 결과의 경우에는 ☞ 키를 눌러도 표시되는 값을 변환하지 않습 니다.
- 대분수(정수, 분자, 분모, 분리 기호를 포함)에서 사용하고 있는 숫자의 자 리수가 10이상이면 소수점 형식으로부터 대분수 형식으로 바뀌지 않습니 다.

Mathl/MathO 또는 Linel/LineO가 선택된 중에 10진수 값 계산 결과를 구하려 면

계산을 입력한 후에 ☰ 대신에 ☞ ☰(≈)을 누릅니다.

표준 계산

분	· 수 기	예산 -		
참	고로,	분수의	입력 방법은 설정	메뉴의 현재 Input/Output 설정을 따릅니다.
2	1 <u>1</u>	_ 13	(Math/MathO)	2 ■ 3 ● + SHFT ■ (■]) <u>1</u> 3
3	- 12	6	(Mathi/MathO)	1 🕑 1 👽 2 🚍 🦷 6
			(l inel/l ineO)	2834181828 1346

주의

- MathI/MathO가 아닌 것이 선택된 중에, 계산의 대분수 및 소수점 값은 결 과를 소수점 값으로 표시합니다.
- •계산 결과의 분수는 약분한 후에 표시됩니다.
- 가분수 및 대분수 표시 간에 계산 결과를 변환하려면, 500T 50D (a분+분)을 누 릅니다.

퍼센트 계산

수치를 입력하고 SHET Ans (%)를 누르던	면 입력값이 퍼센트로 됩니다.	
150 × 20% = 30	150 🗙 20 SHIFT Ans (%) 🚍	30
660은 880의 몇 퍼센트인가를 계산힙	니다. (75%)	
	660 ÷ 880 SHIFT Ans (%) =	75
3500의 25% 감소를 구한다. (2625)		
3500	- 3500 × 25 SHIFT Ans (%) =	2625
도, 분, 초(60 진수) 계산		
아래의 규칙은 60 진수 값을 입력하는 참고로, 값이 0 이라도 도 및 분에 대하	: 것입니다: {도} 痭 {분} 痭 { 배서는 반드시 입력을 해야 합니	{초} 💴. 니다.
2°20'30" + 9'30" = 2°30'00"		
2 •••• 20 •••• 30) •••• + 0 •••• 9 •••• 30 •••• =	2°30'0"
2°30'0"을 십진수로 변환합니다.	• 9 99	2.5
(십진수를 (60 진수로 변환합니다.) 패	2°30'0"
멀티-스테이트먼트		
콜론 문자(:)를 사용해서 2개 이상의 4 오른쪽으로 순서대로 이것들을 실행서	식을 연관시키고 🖃을 누르면 시킬 수 있습니다.	왼쪽에서
3 + 3 : 3 × 3	3 🕂 3 APHA / (:) 3 🗙 3 🚍	6
		9
スロー Ling //Ling 〇 任 上 Ling //Degimal	이에서저메느에 Input/Output	+ 서저니

선택되어 있는 중에 콜론(:)을 입력하면 줄 바꿈 조작이 수행됩니다.

공학 표기 사용하기

값 1234를 소수점 기호를 우측으로 이동시킨	1234 🖃	1234
다음, 좌측으로 이동시켜서 공학 표기로 변환	ENG	1.234×10^{3}
합니다.	ENG	$1234 \times 10^{\circ}$
	SHIFT ENG (\leftarrow)	1.234×10^{3}

 $\underbrace{\text{SHIFT}}_{\text{ENG}} \underbrace{\text{ENG}}_{(\leftarrow)} \qquad 0.001234 \times 10^6$

주의: 위에 나타난 계산 결과는 Off가 설정 메뉴의 Engineer Symbol 설정에서 선택될 때 나타나는 것입니다.

공학 기호 사용하기

계산기는 11가지 공학 기호의 사용을 지원하며(m, µ, n, p, f, k, M, G, T, P, E), 이 기호들이 값 입력 또는 계산 결과 표시에 사용될 수 있습니다.

계산 결과를 공학 기호로 표시하려면

설정 메뉴에서, Engineer Symbol 설정을 On으로 변경합니다.

<u>공학 기호를 사용하는 입력 및 계산 예</u>

500k를 입력하려면

500 (Engineer Symbol)

6(k)**=**

500k

1.024M 1024k

999k (킬로) + 25k (킬로) = 1.024M (메가) = 1024k (킬로) = 1024000을 계산 하려면

999 optn	3	l(Engineer	Symbol)	6	(k)	+	ļ

25 optn	(Engineer	Symbol)	6 (k)	

ENG

ENG	1024000
SHIFT ENG (\leftarrow)	1024k

소인수분해

Calculate 모드에서, 10자리 이하의 양의 정수는 소인수로 소인수분해될 수 있습니다.

1014에 소인수분해를 수행하려면

1014 🖃	1014
SHIFT •••• (FACT)	$2 \times 3 \times 13^{2}$

인수분해되지 않은 값을 다시 표시하려면, F 👓 (FACT) 또는 🖃을 누릅니 다.

주의: 아래 설명된 값 유형은 10자리 이하의 숫자라도 소인수분해될 수 없습니다.

• 값의 소인수 중 하나가 1,018,081 이상인 경우.

• 값의 소인수 중 둘 이상이 3자리를 초과하는 경우.

인수분해될 수 없는 부분은 괄호로 닫혀서 표시됩니다.

계산 이력 및 재생

계산 이력

 화면 상단의 ▲ 및/또는 ▼은 위 및/또는 아래에 더 많은 계산 이력이 있음을 나

 타냅니다. ▲ 및 ●을 사용해서 계산 이력 내용을 스크롤할 수 있습니다.

 2 + 2 = 4
 2 • 2 = 4

 3 + 3 = 6
 3 • 3 = 6

 (뒤로 스크롤) ▲ 4

주의: 계산 이력 데이터는 **∞**을 누를 때마다, 다른 계산 모드로 변경할 때, Input/Output 설정을 변경할 때 또는 RESET 조작("Initialize All" 또는 "Setup Data")을 실행할 때마다 전부 삭제됩니다.

재생

계산 결과가 표시되는 동안, ④ 또는 • 을 눌러서 이전 계산에서 사용한 식 을 편집할 수 있습니다.

 $\underline{4 \times 3} + 2 = 14$

 $\underline{4 \times 3} - 7 = 5$

4×3+2= 14 (계속) ④ 때 때 -7= 5

메모리 기능 사용하기

앤서 메모리(Ans)

취득한 마지막 계산 결과는 Ans(앤서) 메모리에 저장됩니다.

14 × 13의 결과를 7로 나누려면

10 + 5의 결과를 M으로부터 감산하려면

15 (계속) 10**+**55배키 M+(M-)

M의 내용을 불러오려면 (이어서)

(계속) SHIFT STO (RECALL) M+ (M) = 35

주의: 독립 메모리에는 변수 M이 사용됩니다. 또한 M을 불러와서 입력 중인 계산에 사용할 수 있습니다.

모든 메모리의 내용 삭제하기

Ans 메모리, 독립 메모리 및 변수 내용은 🚾을 누르거나, 계산 모드를 변경하 거나 계산기의 전원을 꺼도 유지됩니다. 모든 메모리의 내용을 삭제하려면 아 래의 절차를 수행하십시오.

SHIFT 9 (RESET) 2 (Memory) = (Yes)

함수 계산

주의: 결과가 표시되기 전에 현재의 계산을 중단하려면, MC를 눌러 주십시오. **파이***π*: *π*는 3.141592654로 표시되지만, 내부 계산에 대해서는 *π* = 3.14159265358980이 사용됩니다.

자연대수 함수 기저 e: e는 2.718281828로 표시되지만, 내부 계산에 대해서는 e = 2.71828182845904가 사용됩니다.

sin, cos, tan, sin⁻¹, cos⁻¹, tan⁻¹: 계산을 실행하기 전에 각도 단위를 지정해 주십시오.

 $\sin 30^\circ = \frac{1}{2}$

(Angle Unit: Degree)

1 sin 30) = 2

sinh, cosh, tanh, sinh⁻¹, cosh⁻¹, tanh⁻¹: @TN 1 (Hyperbolic Func)*1를 누를 때에 표시되는 메뉴로부터 함수를 입력합니다. 각도 단위 설정은 계산에 영향 을 주지 않습니다.

*1 계산 모드에 따라서는 🕅 🌰 🔟 을 눌러야 합니다.

°, ^r, ^g: 이들 함수는 각도 단위를 지정합니다. °는 도를 지정하고, ^r는 라디안, S는 그래디언트를 지정합니다. 다음 키 조작을 실행할 때에 표시되는 메뉴로 부터 함수를 입력합니다: @TN 2 (Angle Unit)*2. π/2 라디안 = 90° (Angle Unit: Degree)

90 () SHIFT $\mathbf{x10}^{\mathsf{H}}(\pi) \div 2$) OPTN 2 (Angle Unit) 2 (^r) = *2 계산 모드에 따라서는 🕅 🏟 🛿 을 눌러야 합니다.

10[■], *e*[■]: 지수함수. $e^5 \times 2 = 296.8263182$

(Mathl/MathO)	SHIFT In (e [∎])5 ≥ ≥2 ≡	29	6.8263182
(Linel/LineO)	SHIFT In (e [∎])5) ×2≡	29	6.8263182
log: 대수함수. 💵 🕞 (l	og)를 사용히	·여 log_b를 log ((a, b)로 입력힙	·니다. a에
대해 아무것도 입력하지	않으면 초기	설정으로 10의 2	기저가 사용됩	니다.
$\log_{10}1000 = \log 1000 = 3$	3	SHIFT () (log) 1000 🕽 🚍	3
$\log_2 16 = 4$	SHIFT	(log) 2 (SHIFT)	(,) 16) =	4
💷 키를 사용해서도 입	력할 수 있지	만, Mathl/MathC) 또는 Mathl/D	DecimalO
이 설정 메뉴의 Input/Out	tput에서 선택	백된 경우에만 가	능합니다. 이런	1 경우에
는 기저에 대한 값을 입력	해야 합니다			
$\log_2 16 = 4$		ما	9₽2 € 16 Ξ	4
In: 기저 e의 자연대수 함	수입니다.			
$\ln 90 \ (= \log_e 90) = 4.499$	80967	[n 90]) =	4.	49980967
$x^2, x^3, x^{\blacksquare}, \sqrt{\blacksquare}, \sqrt[3]{\blacksquare}, \sqrt[4]{\square}$	j,x1:누승,브	F승근 및 역함수		
$(1 + 1)^{2+2} = 16$		(1+1)) x •2+2=	16

$(5^2)^3 = 15625$	$(5x^2)$ Shift $x^2(x^3)$	= 15625
$\sqrt[5]{32} = 2$		
(Mathl/MathO)	Shift x •(¶√□) 5 ● 32	Ξ 2
(Linel/LineO)	5 Shift $x^{\bullet}(\sqrt{n}) 32$	Ξ 2
$\sqrt{2} \times 3 = 3\sqrt{2} = 4.242640687$		
(Mathl/MathO)	V a 2 > X3 =	$3\sqrt{2}$
(Linel/LineO)	V a 2) x 3 =	4.242640687
♬₽, 읎∎, ཐ▬: 이들 함수는 수치적분	본법, 중심 차분 근사 해법 그i	리고 지정된
범위의 f(x)에 대한 합계를 계산하기	위해 가우스-크론로드(Gaus	ss-Kronrod)
방법을 사용합니다.		
인려 그치		

(2) Linel/LineO 또는 Linel/DecimalO이 선택된 경우

(_) _						
	∫ ⊒ *1	$\frac{d}{dx}$ *2	∑⊸ *3			
(1)	$\int_a^b f(x) dx$	$\left. \frac{d}{dx}(f(x)) \right _{x = a}$	$\sum_{x=a}^{b} (f(x))$			
(2)	$\int (f(x), a, b, tol)$	$\frac{d}{dx}(f(x), a, tol)$	$\sum (f(x), a, b)$			

*1 tol에 대해 아무 것도 입력되지 않은 경우에 1 × 10⁻⁵이 되는 오차를 tol.
*2 tol에 대해 아무 것도 입력되지 않은 경우에 1 × 10⁻¹⁰이 되는 오차를 tol.
*3 a 및 b는 -1 × 10¹⁰ < a ≤ b < 1 × 10¹⁰ 범위 내에서 지정할 수 있는 정수입니다.

적분 및 미분 계산 주의사항

- f(x)에서 삼각 함수를 사용하는 경우에는, 각도 단위로 "Radian"을 지정 하십시오.
- tol값이 작을수록 정밀도를 높이지만, 계산 시간 또한 증가합니다. tol을 지 정할 때에는 1 × 10⁻¹⁴ 이상인 값을 사용해 주십시오.
- 적분에는 일반적으로 상당한 시간이 걸립니다.
- f(x)의 내용, 적분 범위 내의 양수 및 음수 값 또는 적분 범위에 따라서는, 허용 범위를 초과하는 계산 에러가 발생해서 계산기가 에러 메시지를 표시할 수도 있습니다.
- 미분 계산에서, 연속되지 않는 지점, 갑작스런 변동, 극도로 크거나 작은 지 점, 변곡점 및 미분할 수 없는 점의 삽입 또는 0에 근접하는 미분점 또는 미 분 계산은 정밀도가 낮아지거나 에러를 발생시킬 수 있습니다.

$\int_{1}^{1} \ln(x) dx$

(Mathl/MathO)Image: Image: Image

함수 *y* = sin(*x*)에 대해서 *x* = π/2 지점에서의 미분값을 얻으려면 (Angle Unit: Radian) 町 @(슈■) sin @M D(*x*) D ···(1)

(Mathl/MathO)

$$x = 1$$

(Mathl/MathO)

SHIFT \mathcal{X} (Ξ -) ALPHA) (x) + 1 > 1 > 5 = 20

(Linel/LineO)	SHIFT \mathcal{X} (Ξ –) (ALPHA) (x) + 1
	SHIFT) (,) 1 SHIFT) (,) 5) = 20
Pol, Rec: Pol 은 직교좌표를 극좌표를 로 변환합니다.	로 변환하며, Rec는 극좌표를 직교좌표
●계산을 실행하기 전에 각도 단위 르 지저해 조신시오	$Pol(x, y) = (r, \theta)$ $Rec(r, \theta) = (x, y)$
● r 및 θ 그리고 x 및 y에 대한 계산	$\begin{array}{c c} Y \\ P(x,y) \\ P_{1} \end{array} \qquad \begin{array}{c} Y \\ P(r,\theta) \\ \end{array}$
결과는 각각 변수 x 및 y에 할당됩	y'_{1} $\frac{POI}{Rec}$ r
●계산 결과 θ는 -180° < θ ≦ 180°	
의 범위에서 표시됩니다.	
직교 좌표 (√2, √2)를 극 좌표로 변환	하려면 (Angle Unit: Degree)
(Mathl/MathO) SHET (Pol) √=	$] 2 \bigcirc \text{SHFT} () (,) \lor 2 \bigcirc () = r = 2, \theta = 45$
국 솨표 (√2, 45°)들 식교 솨표로 면원 (Math/MathO)	한아려면 (Angle Unit: Degree) 아이아 에 에 이 아이아 이
(Mathi/MathO) 메티트(Re	x = 1, y = 1
(5 + 3)! = 40320	$(5+3)$ SHET $\mathbf{x}^{-1}(\mathbf{x}^{+}) = 40320$
Abs: 절대값 함수.	
$ 2 - 7 \times 2 = 10$	
(Mathl/MathO)	■ ((Abs) 2 - 7 > × 2 = 10
(Linel/LineO) []	빼미(((Abs) 2(=) 7()) [¥] 2(=) 10
MathO이 설정 메뉴의 Input/Output 됩니다.	↓ 전택된 경우에는 결과가 분수로 표시
3자리 정수의 난수를 얻으려면	
	1000 SHIFT • (Ran#) = 459
Dopint#, 지정된 시자 가과 끈 가 나((각 실행에서 걸과가 나둡니다.) 이이 범이에서 이사 나스를 생성하는 한
수입니다.	기의 심귀에서 의시 친구들 중중이는 봄
1 에서 6 사이의 난수 정수를 생성하	려면
(ALPHA)	• (RanInt)1 (,) 6 = 2
	(각 실행에서 결과가 나늡니나.)
10개의 그룹으로부터 3명을 선택할 [려면	대에 가능한 순열 및 조합의 수를 결정하
순열:	10 SHIFT (n Pr) 4 = 5040
조합:	10 SHIFT ↔ (<i>n</i> C <i>r</i>) 4 = 210
Rnd: Rnd 함수를 사용하면 현재의 N	lumber Format 설정에 따라 인수의 소수
'점 두운 없이 민을림됩니다. 에를 들 에는 Rnd(10 ÷ 3)의 계산 결과가 3.3	계, Number Format 설정이 Fix 3인 경우 33입니다. Norm 1 또는 Norm 2 설정을
사용하는 경우에는 가수 부분의 11번	!째 자리에서 인수를 반올림합니다.
표시 자리수로 Fix 3이 선택된 때에 다	나음 계산을 실행하려면: 10 ÷ 3 × 3 및
$Rnd(10 \div 3) \times 3$ (Mathi/DecimalO)	t)1(Fix)3
SHI	₪ (Rnd) 10 ÷ 3) × 3 = 9.999
QR 코드 기능	ASIO CASIO CASIO CASIO CASIO CASIO ASIO CASIO CASIO CASIO CASIO CASIO
계산기는 스마트 장치에서 읽을 수 있	!는 QR 코드*를 표시할 수 있습니다.

* QR 코드는 일본 및 기타 국가에서 DENSO WAVE INCORPORATED의 등 록 상표입니다.

중요

- 이 절의 조작에서는 여러 개의 QR 코드를 읽을 수 있는 QR 코드 판독기가 스마트 장치에 설치되어 있으며 이 장치가 인터넷에 연결될 수 있다고 가 정합니다.
- 이 계산기에 표시되는 QR 코드를 스마트 장치로 읽으면 스마트 장치가 CASIO 웹사이트에 액세스합니다.

주의: 설정 화면, 메뉴 화면, 에러 화면 또는 계산 모드의 계산 결과 화면이나 표 화면이 표시되는 중에 SHIT OFTN (QR)을 눌러서 QR 코드를 표시할 수 있습 니다. 자세한 내용은, CASIO 웹사이트를 방문하십시오(wes.casio.com).

QR 코드 표시하기

예: 계산 결과의 QR 코드를 계산기의 Calculate 모드에서 표시하고 스마트 장 치로 읽으려면

- 1. Calculate 모드에서, 계산을 실행합니다.
- 2. 5배키 0PTN (QR)을 눌러서 QR 코드를 표시합니다.
 - •표시 오른쪽 하단의 숫자는 현재의 QR 코드 번호와 QR 코드의 총 수를 나타냅니다. 그 다음 QR 코드를 표시하려면, 文 또는 🖃을 누릅니다.

주이

- 계산기가 QR 코드를 생성하는 동안에 🎹 인디케이터가 화면 상단에 표시됩니다.
- 이전 QR 코드로 돌아가려면, 원하는 코드가 나타날 때까지 🕤 또는 ■을 필요한 횟수만큼 눌러서 스크롤하십시오.
- 3. 스마트 장치를 사용하여 계산기 화면의 QR 코드를 읽습니다.
 - QR 코드를 읽는 방법에 대한 설명은, 사용 중인 QR 코드 판독기의 사 용자 설명서를 참조하십시오.

QR 코드를 읽는 데 어려움이 있으면: QR 코드가 표시된 중에 ④ 및 ▷을 사용하여 QR 코드의 표시 콘트라스트를 조정하십시오. 이 콘트라스트 조정은 QR 코드 표시에만 영향을 미치며.

- 중요
- 사용 중인 스마트 장치 및/또는 QR 판독기 앱에 따라서는, 이 계산기에서 생성된 QR 코드를 읽는 데 어려움이 있을 수 있습니다.
- "QR Code" 설정이 "Version 3"인 경우, QR 코드를 표시할 수 있는 계 산기 모드가 제한됩니다. QR 코드 표시를 지원하지 않는 모드에서 QR 코 드를 표시하려고 시도하면. "Not Supported (Version 3)" 메시지가 나타 납니다. 그러나, 이 설정에 의해 생성된 QR 코드는 스마트 장치에서 읽기 가 더 쉽습니다.
- 자세한 내용은, CASIO 웹사이트를 방문하십시오(wes.casio.com).

QR 코드 표시를 종료하려면: AC 또는 5배키 OFTM (QR)을 누릅니다.

복소수 계산

복소수 계산을 수행하려면, 먼저 Complex 모드로 들어가십시오. 직교 좌표 (a +bi) 또는 극 좌표 (r∠θ) 중 하나를 사용하여 복소수를 입력할 수 있습니다. 복 소수 계산 결과는 설정 메뉴의 Complex 설정에 따라 표시됩니다. $(1 + i)^4 + (1 - i)^2 = -4 - 2i (Complex + a + bi)^*$

$(1 + \operatorname{ENG}(i)) \times 4 \bigoplus + (1 - \operatorname{ENG}(i)) \times 2 =$	-4 – 2 <i>i</i>
$2 \angle 45 = \sqrt{2} + \sqrt{2}i$ (Angle Unit: Degree, Complex: $a+bi$)	

2 SHIFT ENG (\angle) 45 $\sqrt{2} + \sqrt{2}i$

 $\sqrt{2} + \sqrt{2}i = 2 \angle 45$ (Angle Unit: Degree, Complex: $r \angle \theta$)

2∠45

$\sqrt{2} 2 \bigcirc + \sqrt{2} 2 \bigcirc \text{ENG}(i) =$

- * 규칙 (*a*+*bi*)^{*n*}을 사용하여 복소수를 정수로 누승하려는 경우, 누승 값은 다음 범위에 있을 수 있습니다: -1 × 10¹⁰ < *n* < 1 × 10¹⁰.
- 주의
- 국 좌표 형식으로 계산 결과를 입력하고 표시하려는 경우에는 계산을 시작 하기 전에 각도 단위를 지정해 주십시오.
- 계산 결과의 θ 값이 -180° <θ ≤ 180° 범위에서 표시됩니다.
- Linel/LineO 또는 Linel/DecimalO이 선택된 동안의 계산 결과 표시는 a와 bi (또는 r과 θ)를 별도의 행에 나타납니다.

Complex 모드 계산 예

2 + 3 i 의 공역복소수를 얻으려면 (Complex: <i>a+bi</i>)	
(OPTN (2) (Conjugate) 2 + 3 ENG(i)) =	2-3 <i>i</i>
1 + <i>i</i> 의 절대값과 인수를 얻으려면 (Angle Unit: Degree)	
SHIFT ((Abs) 1 + ENG(i) =	$\sqrt{2}$
$\begin{array}{c} \hline \textbf{OPTN} 1 (Argument) 1 + ENG(i) \end{array} = \\ \hline \end{array}$	45
2 + 3 <i>i</i> 의 실수 부분과 허수 부분을 분리하려면	
OPTN 3 (Real Part) 2 + 3 ENG (i)) =	2
OPTN 4 (Imaginary Part) 2 3 ENG (i) =	3
계산 출력 형식을 지정하기 위해서 명령 사용하기	
$\sqrt{2} + \sqrt{2}i = 2 \angle 45$, $2 \angle 45 = \sqrt{2} + \sqrt{2}i$ (Angle Unit: Degree)	
	2745

1 2 ● + 1 2 ●	ENG (i) OPTN ($I (r \angle \theta) \equiv$	2∠45
2 SHIFT ENG (\angle) 45 (OPTN) (2 ($a+bi$) =	$\sqrt{2} + \sqrt{2}i$

CALC 사용하기

CALC를 사용하면 하나 이상의 변수를 포함하는 계산 식을 입력할 수 있고, 이 변수에 값을 할당할 수 있고, 결과를 계산할 수 있습니다. CALC는 Calculate 모드 및 Complex 모드에서 사용될 수 있습니다.

CALC를 사용하여 아래의 같은 종류의 식을 저장할 수 있습니다.

• 2x + 3y, 2Ax + 3By + C, A + Bi =

• $x + y : x (x + y) \equiv$

• $y = x^2 + x + 3 \equiv$

주의: CALC을 누른 때부터 ACC을 눌러서 CALC를 종료할 때까지의 시간 동안에는, 입력을 위해서 리니어 입력 절차를 사용해야 합니다.

3A + B를 저장한 후 다음 값을 대체해서 계산을 실행하려면: A = 5, B = 10 3 때 ↔ (A) + 때 ↔ (B) 3A+B 3A+B 3A+B 3A+B

CALC 5 = 10 = =

A =0	\rightarrow	2	5

SOLVE 사용하기

SOLVE는 방정식의 근사 해법으로 뉴턴의 방법을 사용합니다. SOLVE는 Calculate 모드에서만 사용할 수 있습니다. SOLVE는 다음과 같은 형식의 방 정식 입력을 지원합니다. 예: *y* = *x* + 5, *x* = sin(M), *xy* + C (*xy* + C = 0으로 취급됨) 주의

- 시작 괄호를 포함하는 입력 함수(예: sin 및 log)가 방정식에 포함된 경우에 는 끝 괄호를 생략하지 마십시오.
- [MFT] [ALC] (SOLVE)를 누른 때부터 AC 을 눌러서 SOLVE를 종료할 때까지의 시간 동안에는, 입력을 위해서 리니어 입력 절차를 사용해야 합니다.
- *b* = -2인 경우 *x* 에 대해 *x*² + *b* = 0 을 풀려면

- 해는 항상 소수점 형식으로 표시됩니다.
- •(왼쪽) (오른쪽) 결과가 0에 가까울수록 해의 정확도가 높아집니다.

중요

- SOLVE는 사전 설정된 횟수만큼 수렴을 실행합니다. 해를 찾을 수 없는 경 우에는 "Continue:[=]"라는 확인 화면을 표시해서 계속할 것인지 여부를 묻습니다. 🖃을 눌러서 계속하거나 🚾을 눌러서 SOLVE 조작을 취소합니 다.
- x(해 변수)에 대한 초기값으로 입력한 것에 따라서는 SOLVE가 해를 구하지 못할 수도 있습니다. 이런 경우에는 해에 가까운 것으로 초기값을 변경해 보십시오.
- 해가 존재하더라도 SOLVE가 올바른 해를 결정할 수 없는 경우가 있습니다.
- SOLVE는 뉴턴의 방법을 사용하기 때문에 복수해가 있더라도 그 중에서 하 나만 돌려 줍니다.
- 뉴턴의 방법에는 한계가 있기 때문에 다음과 같은 방정식에 대한 해는 구하기 어려운 경향이 있습니다: $y = \sin x$, $y = e^x$, $y = \sqrt{x}$.

통계 계산

아래의 단계를 수행하여 통계 계산을 시작하십시오.

- 1. 📖 을 누르고, Statistics 모드 아이콘을 선택한 다음, 🖃 을 누릅니다.
- 2. Select Type 화면에서, 통계 계산 종류를 선택합니다.

선택할 통계 계산 종류:	누를 키:
일변수 (x)	1(1-Variable)
이변수 (<i>x</i> , <i>y</i>), 직선 회귀	2 (y=a+bx)
이변수 (<i>x</i> , <i>y</i>), 2차 회귀	3(y=a+bx+cx ²)

이변수 (<i>x</i> , <i>y</i>), 대수 회귀	4 (y=a+b·ln(x))
이변수 (x, y), e 지수 회귀	▼1(y=a·e^(bx))
이변수 (x, y), ab 지수 회귀	2 (y=a·b^x)
이변수 (x, y), 누승 회귀	▼ 3(y=a·x^b)
이변수 (x, y), 역수 회귀	④ 4 (y=a+b/x)

• 위의 키 조작 중 하나를 수행하면 통계 편집기가 표시됩니다. 주의: 통계 모드로 들어간 후에 계산 종류를 변경하려는 경우에는 키 조작 @TM ① (Select Type)을 수행하여 계산 종류 선택 화면을 표시합니다.

통계 편집기에서 데이터 입력하기

Statistics 편집기는 1열, 2열 또는 3열: 일변수 (*x*), 일변수 및 도수 (*x*, Freq), 이 변수 (*x*, *y*), 이변수 및 도수 (*x*, *y*, Freq)를 표시합니다. 입력할 수 있는 데이터 행의 수는 열의 수에 따라 다릅니다: 1열의 경우 160행, 2열의 경우 80행, 3열 의 경우 53행.

주의

- Freq (도수) 열을 사용해서 동일한 데이터 항목의 양(도수)을 입력합니다. 설정 메뉴의 Statistics 설정을 사용하여 Freq 열의 켜기(표시하기) 또는 끄 기(표시하지 않기)를 수행할 수 있습니다.
- 통계 편집기가 화면에 있는 중에 🚾 키를 누르면 입력 데이터에 따라 계산 을 수행하기 위한 통계 계산 화면이 표시됩니다. 통계 계산 화면에서 통계 편집기로 돌아가기 위해 수행해야 하는 작업은 선택한 계산 종류에 따라 다릅니다. 일변수를 선택했으면 (PTN) ③ (Data) 를 누르고, 이변수를 선택했 으면 (PTN) ④ (Data)를 누릅니다.

예 1: 대수 회귀를 선택해서 다음 데이터를 입력하려면: (170, 66), (173, 68), (179, 75)

OPTN 1 (Select Type) 4 (y=a+b·ln(x))

170 **≡** 173 **≡** 179 **≡ ⊙** 66 **≡** 68 **≡** 75 **≡**

중요: Statistics 모드를 종료할 때마다, 일변수 및 이변수 통계 계산 종류 사이 를 전환할 때마다, 또는 설정 메뉴의 Statistics 설정을 변경할 때마다 통계 편 집기에서 현재 입력한 모든 데이터가 삭제됩니다.

라인을 삭제하려면: 통계 편집기에서, 삭제하려는 라인으로 커서를 이동시킨 후 <a>E 는 릅니다.

라인을 삽입하려면: 통계 편집기에서, 라인을 삽입하려는 위치로 커서를 이동 시킨 후 다음 키 조작을 수행합니다: @M 2 (Editor) 1 (Insert Row).

통계 편집기의 모든 내용을 삭제하려면: 통계 편집기에서 다음 키 조작을 수 행합니다: @FM 2 (Editor) 2 (Delete All).

입력 데이터에 따라 통계값 표시하기

통계 편집기에서:

OFTN 3 (1-Variable Calc 또는 2-Variable Calc)

통계 계산 화면에서:

@FTN 2 (1-Variable Calc 또는 2-Variable Calc)

입력 데이터에 따라 회귀 계산 결과 표시하기 (이변수 데 이터만 해당)____

통계 편집기에서: @TN ④ (Regression Calc) 통계 계산 화면에서: @TN ③ (Regression Calc)

y=a+b∙ln(x)	
a=-852.1627746	
b=178.6897969	
r=0.9919863213	

입력 데이터로부터 통계값 구하기

이 절의 조작을 사용하면, 통계 편집기에서 입력한 데이터에 따라 변수 (σ_x , Σx² 등)에 할당된 통계값을 불러올 수 있습니다. 또한 변수를 계산에 사용할 수도 있습니다. 이 절의 조작은 통계 편집기가 표시된 중에 🗚을 누를 때 나 타나는 통계 계산 화면에서 수행됩니다. 지원되는 통계 변수 및 그것을 불러오기 위해서 눌러야 하는 키는 아래와 같 습니다. 일변수 통계 계산에 대해서는 애스테리스크(*)가 표시된 변수를 사용 할 수 있습니다. 합계: Σx^* , Σx^{2*} , Σy , Σy^2 , Σxy , Σx^3 , $\Sigma x^2 y$, Σx^4 OPTN (Summation) 1 ~ 8 항목 수: *n*^{*} / 평균: x̄^{*}, ȳ / 모집단 분산: σ²_x^{*}, σ²_v / 모집단 표준 편차: σ_x^{*}, σ_v / 샘 플 분산: s²_x*, s²_y / 샘플 표준 편차: s_x*, s_y OPTN (2 (Variable) 1 ~ 8, (1 ~ 3 **최소값:** min(x)*, min(y) / **최대값:** max(x)*, max(y) 일변수 통계 계산이 선택된 경우: (Min/Max) 1. 5 이변수 통계 계산이 선택된 경우: OPTN () 3 (Min/Max) 1 ~ 4 1분위수: Q,* / 중앙값: Med* / 3분위수: Q,* (일변수 통계 계산에만 해당) OPTN () 3 (Min/Max) 2 ~ 4 회귀 계수: $a, b / 상관 계수: r / 추정값: \hat{x}, \hat{y}$ OPTN (Regression) 1 ~ 5 2차 회귀에 대한 회귀 계수: a, b, c / 추정값: $\hat{x}_1, \hat{x}_2, \hat{y}$ **OPTN (Regression**) **(1)** ~ **(6)** • \hat{x} , \hat{x}_1 , \hat{x}_2 및 \hat{y} 은 그 바로 앞에 인수가 있는 일종의 명령입니다. 예 2: 일변수 데이터 x = {1, 2, 2, 3, 3, 3, 4, 4, 5}를 입력하려면, Freq 열을 사 용하여 각 항목에 대한 반복 수를 지정하고 {x,; freq,} = {1;1, 2;2, 3;3, 4;2, 5;1}, 평균을 계산합니다. SHIFT WENN (SETUP) (3 (Statistics) (0n) **OPTN 1** (Select Type) **1** (1-Variable) 23 1■2■3■4■5■ ♥ ● 2345 32 4 5 1=2=3=2= AC OPTN \bigcirc 2 (Variable) 1 (\overline{x}) = 3 **예 3:** 다음의 이변수 데이터에 대한 대수 회귀 상관 계수를 계산하고 회귀 공 식을 정하려면: (x, y) = (20, 3150), (110, 7310), (200, 8800), (290, 9310). 결 과에 대해서 Fix 3(소수점 3자리)을 지정하십시오. SHIFT MENU (SETUP) (SETUP) (Statistics) (Off) SHIFT WENN (SETUP) 3 (Number Format) 1 (Fix) 3 **OPTN 1** (Select Type) **4** ($y=a+b\cdot ln(x)$) × 110 7́310 20 = 110 = 200 = 290 = 🔿 🗩 234 200 290 8800 9310 3150 = 7310 = 8800 = 9310 = 0.998 AC OPTN (4 (Regression) 3 (r) =

AC $OPTN \bigcirc 4$ (Regression) 1 (a) =

AC OPTN (4 (Regression) 2 (b) =

추정값 계산하기

이변수 통계 계산으로 구한 회귀 공식에 따라, 주어진 x값에 대해 v의 추정값 을 계산할 수 있습니다. 대응하는 x값 (2차 회귀의 경우 x1 및 x2의 두 값)을 회 귀 공식의 *v*값에 대해 계산할 수도 있습니다.

예 4: 예 3의 대수 회귀 데이터에 의해 생성된 회귀 공식에서 x = 160일 때 v의 추정값을 결정하려면. 결과에 대해서 Fix 3을 지정하십시오. (예 3에서의 조작 을 완료한 후에 다음 조작을 수행하십시오.)

AC 160 OPTN \bigcirc 4 (Regression) 5 (\hat{y}) =

8106.898

R(t)

Ο t

중요: 다수의 데이터 항목이 있는 경우에는 회귀 계수. 상관 계수 및 추정값 계 산에는 꽤 시간이 걸릴 수 있습니다.

정규 분포 계산하기

일변수 통계 계산을 선택한 때에는 다음 키 조작을 실행할 때에 표시되는 메 뉴로부터 아래에 표시되는 함수를 사용해서 정규 분포 계산을 실행할 수 있습 L|C: OPTN (4 (Norm Dist).

P(t)

ήt

P, Q, R: 이들 함수는 인수 *t*를 가지며, 표준 정규 분포의 확률을 주변 그림과 같 이 결정합니다.

▶ t: 이 함수는 인수 x 뒤에 옵니다. 이 함수는 통계 편집기에서 입력된 데이터 의 평균값(\overline{x}) 및 모집단 표준 편차(σ_x)를 사용하여 데이터 값 x의 표준 변량을 계산합니다.

 $x \triangleright t = \frac{x - \overline{x}}{\overline{x}}$ σ_x

예 5: 예 2의 일변수 데이터의 경우. x = 2일 때의 정규화된 변량과 그 지점에 서의 P(t)를 정하려면.

AC 2 ($PTN \otimes 4$ (Norm Dist) 4 ($\succ t$) =

2►t -0.8660254038

P(Ans)

Q(t)

 $\dot{\cap} t$

OPTN (Norm Dist) (P() Ans) =

0.19324

n진 계산

10진수, 16진수, 2진수 및/또는 8진수 값을 사용하여 계산을 수행하려면, Base-N 모드로 들어가십시오. Base-N 모드로 들어간 후, 다음 키 중의 하나를 눌러서 번호 모드를 전환합니다: 10진수는 🗷 (DEC), 16진수는 🗷 (HEX), 2 진수는 💁 (BIN) 또는 8진수는 间 (OCT).

11, + 1,를 계산하려면

leg_□ (BIN)11 + 1 =

주의

- 다음과 같은 키를 사용해서 16진수 값에 대해 A에서 F까지 문자를 입력합 $L|L|: \bigoplus (A), \bigoplus (B), \mathbb{Z}(C), \mathbb{Sin}(D), \mathbb{COS}(E), \mathbb{Tan}(F).$
- Base-N 모드에서 분수(10진수) 값 및 누승은 지원되지 않습니다. 계산 결 과에 분수 부분이 있는 경우에는 잘립니다.
- 입력 및 출력 범위(32비트)에 대한 자세한 내용이 아래에 나타나 있습니다.

<u> </u>

양수:	

	으ㅅ.	1000000000000000000000000000000000000
		111111111111111111111111111111111111111
히지스	양수:	$00000000000 \le x \le 177777777777777777777777777777777$
8신구	음수:	$2000000000 \le x \le 377777777777777777777777777777777$
10진수	-2147483648	$3 \le x \le 2147483647$
	양수:	$00000000 \le x \le 7FFFFFFF$
16신구	음수:	$80000000 \leq x \leq FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF$

특수한 입력값의 번호 모드 지정하기

값의 바로 다음에 특수한 명령을 입력해서 그 값의 번호 모드를 지정할 수 있 습니다. 특수한 명령은 다음과 같습니다: d(10진수), h(16진수), b(2진수) 및 o(8진수).

10₁₀ + 10₁₆ + 10₂ + 10₈을 계산해서 10진수 값으로 결과를 표시하려면 ▲C ☞ (DEC) @FTN ♥ 1(d) 10 + @FTN ♥ 2(h) 10 +

OPTN 💌 3 (b) 10 🕂 OPTN 💌 4 (o) 10 🚍

36

다른 종류의 값으로 계산 결과 변환하기

다음 키 조작 중의 하나를 사용해서 현재 표시된 계산 결과를 다른 종류의 값 으로 변환할 수 있습니다: 🖅 (DEC), 🖅 (HEX), 💁 (BIN), ៣ (OCT).

15₁₀ × 37₁₀을 10진수 모드에서 계산한 후 결과를 16진수로 변환하려면

AC 𝑥² (DEC) 15 **𝑥** 37 **Ξ** 555

x (HEX) 0000022B

논리 및 부정 연산

논리 및 부정 연산을 수행하려면 @MD을 누른 다음, 나타나는 메뉴에서 원하는 명령(and, or, xor, xnor, Not, Neg)을 선택합니다. 아래의 모든 예는 2진수 모 드(@DDD)에서 수행됩니다.

1010₂ 및 1100₂의 논리 AND를 결정하려면 (1010₂ and 1100₂)

AC 1010 OPTN 3 (and) 1100 =

0000 0000 0000 0000 0000 0000 0000 1000

1010₂의 비트 방향의 보수를 결정하려면 (Not(1010₂))

AC (PTN 2 (Not) 1010) = 1111

1111 1111 1111 1111 1111 1111 1111 0101

주의: 2진수, 8진수 또는 16진수값의 음수는 계산기가 값을 일단 그 2진수의 2 의 보수로 만든 후에 원래의 진수로 되돌립니다. 10진수 값의 경우, 계산기는 음의 부호를 붙입니다.

방정식 계산

아래의 단계를 수행하여 Equation/Func 모드에서 방정식을 풉니다.

- 2. 수행하려는 계산의 종류를 선택합니다.

선택할 계산 종류:	이 작업 수행:
두 개, 세 개 또는 네 개의 미지수 를 가지는 연립 1차방정식	1)(Simul Equation)을 누른 다음, 번 호 키 (2)~4)을 사용하여 미지수 의 수를 지정합니다.
선형 2차방정식, 3차방정식 또는 4차방정식	 (Polynomial)을 누른 다음, 번호 키 (2 ~ ④)을 사용하여 다항식 차수 를 지정합니다.

3. 표시되는 계수 편집기를 사용해서 계수값을 입력합니다.

- 예를 들어, 2x² + x 3 = 0를 풀려면, 단계 2에서 ②(Polynomial) ②을 누릅니다. 표시되는 계수 편집기를 사용해서 2 ■ 1 ■ ↔ 3 ■ 을 입력 합니다.
- 🗚 을 누르면 모든 계수가 0으로 됩니다.
- 4. 모든 값이 원하는 대로 된 후에, 🖃을 누릅니다.

 - 현재 표시된 해를 변수에 할당할 수 있습니다. 해가 표시되는 중에, 500
 을 누른 다음, 해를 할당하려는 변수의 이름에 해당하는 키를 누릅니다.
 해가 표시되는 중에 계수 편집기로 돌아가려면 600 우릅니다.

주의: √을 포함하는 해는 선택한 계산 종류가 Polynomial인 경우에만 표시됩니다.

현재의 방정식 종류 설정을 변경하려면: @ ① (Simul Equation) 또는 @ ② (Polynomial)을 누른 다음, ②, ③ 또는 ④을 누릅니다. 방정식 종류 를 변경하면 계수 편집기의 모든 계수값이 0으로 변경됩니다.

Equation/Func 모드 계산 예

- 1 글 2 글 ⊖ 2 글 (x₁=) -1 + √3 (x₂=) -1 - √3 (y = x² + 2x - 2의 로컬 최소값의 x좌표를 표시합니다.*) (y = x² + 2x - 2의 로컬 최소값의 y좌표를 표시합니다.*) (x=) -1 (y = x² + 2x - 2의 로컬 최소값의 y좌표를 표시합니다.*) (y=) -3
- * 또한 함수 y = ax² + bx + c의 로컬 최소값(또는 로컬 최대값)에 대한 x좌표 및 y 좌표도 표시되지만, 계산 종류에 선형 2차방정식이 선택된 경우에만 표시됩니다.

행렬 계산

Matrix 모드를 사용해서 최대 4×4열의 행렬을 포함하는 계산을 실행합니다. 행렬 계산을 실행하려면, 아래의 예와 같이 특정한 행렬 변수(MatA, MatB, MatC, MatD)를 사용하십시오.

- $\mathbf{\dot{Q}} : \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \times \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$
 - 1. 을 누르고, Matrix 모드 아이콘을 선택한 다음, 🖃을 누릅니다.
 - 2. 1(MatA) 2(2행) 2(2열)을 누릅니다.
 - 그러면 MatA에 대해 지정된 2 × 2 행렬 의 요소를 입력하기 위한 행렬 편집기 가 표시됩니다.

3. MatA의 요소를 입력합니다: 2 = 1 = 1 = 1 = .

- 4. 다음 키 조작을 수행합니다: @TN 1 (Define Matrix) 2 (MatB) 2 (2 행) 2 (2열).
- 6. ▲ 을 눌러 계산 화면으로 가서, 계산(MatA x MatB)을 수행합니다: @ [1] ③ (MatA) ★ @ [1] ④ (MatB) = .
 - 그러면 계산 결과와 함께 MatAns (행렬 앤서 메모리) 화면이 표시됩니다.

행렬 앤서 메모리(MatAns)

Matrix 모드에서 실행한 계산 결과가 행렬일 때에는 항상 MatAns 화면이 결과 와 함께 표시됩니다. 결과는 "MatAns"라는 변수에도 할당될 수 있습니다. MatAns 변수는 아래와 같은 계산에 이용할 수 있습니다.

- MatAns 변수를 계산에 삽입하려면 다음 키 조작을 수행하십시오: ☞ ⑦ ⑦ ① (MatAns).
- MatAns 화면이 표시된 때에 다음 키 중의 하나를 누르면 계산 화면으로 자 동으로 전환됩니다: Ⅰ, Ⅰ, ☑, ☑, ☑, ☑, ☑, 谜 (x³).

행렬 변수 데이터 할당 및 편집 행렬 변수에 새로운 데이터를 할당하려면

- 1. @ 1 (Define Matrix)을 누른 후에, 표시되는 화면에서 데이터를 할당하 려는 행렬 변수를 선택합니다.
- 2. 표시되는 대화 상자에서, 번호 키 (1 ~ 4)을 사용하여 행 수를 지정합 니다.
- 3. 표시되는 그 다음 대화 상자에서, 번호 키 (1 ~ 4)을 사용하여 열 수를 지정합니다.
- 4. 표시되는 행렬 편집기를 사용해서 행렬의 요소를 입력합니다.

행렬 변수의 요소를 편집하려면

@TN 2 (Edit Matrix)을 누른 후에, 표시되는 화면에서 편집하려는 행렬 변수를 선택합니다.

행렬 변수(또는 MatAns) 내용을 복사하려면

- 1. 행렬 편집기를 사용해서 복사하려는 행렬을 표시합니다.
 - MatAns 내용을 복사하려는 경우에는, 다음과 같이 실행해서 MatAns 화면을 표시합니다: @M 🐨 1 (MatAns) 🖃 .
- 2. 500을 누른 후, 다음 키 조작 중의 하나를 실행하여 복사 대상을 지정합니다: ⊖(MatA),(MatB), 20 (MatC) 또는 50 (MatD).
 - 그러면 복사 대상의 내용과 함께 행렬 편집기가 표시됩니다.

행렬 계산 예

다음 예에서는 MatA =
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
, MatB = $\begin{bmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \end{bmatrix}$ 을 사용합니다.

MatA의 행렬식을 구하려면 (Det(MatA))

MatA의 역수, 제곱 및 세제곱을 구하려면 (MatA⁻¹, MatA², MatA³)

주의: 이 입력에는 🗷을 사용할 수 없습니다. 🗷을 사용해서 "-1"을 입력 하고, 😰을 사용해서 제곱을 지정하고, 폐 🗷 (x3)을 사용해서 세제곱을 지 정합니다.

수치표 만들기

Table 모드에서는 하나 이상의 함수에 따라 수치표를 생성합니다. **예:** -1 $\leq x \leq 1$ 범위에서, 0.5단위의 증분으로 함수 $f(x) = x^2 + \frac{1}{2}$ 및 $g(x) = x^2 - \frac{1}{2}$ 에 대한 수치표를 생성하려면 1. I E 을 누르고, Table 모드 아이콘을 선택한 다음, 드 을 누릅니다. 2. 설정을 구성하여 두 함수에서 수치표를 생성합니다. SHIFT MENU (SETUP) \bigcirc \bigcirc 2 (Table) 2 (f(x),g(x)) 3. $x^2 + \frac{1}{2}$ 을 입력합니다. $f(x)=x^2+\frac{1}{2}$ ALPHA (x) x^2 + 1 = 2 4. $x^2 - \frac{1}{2}$ 을 입력합니다. $g(x) = x^2 - \frac{1}{2}$ = ALPHA $) (x) x^2 - 1 = 2$ 5. 🖃을 누릅니다. 표시되는 Table Range 대화 상자에서, Start의 값을 입력 합니다 (기본값: 1), End (기본값: 5) 및 Step (기본값: 1). Table Range Start:-1 □ 1 = 1 = 0.5 = End :1 Step :0.5 6. 🖃을 눌러 수치표를 생성합니다. f(x) 1.5 9(%) 0.5 • 🗚 을 눌러 단계 3의 화면으로 돌아갑 234 -0.5 0.75 0.25 0.5 0.5 LIC.

조언

• 단계 6에 나타난 수치표에서, 현재 강조 표시된 x 셀의 값을 변경할 수 있습 니다. x 값을 변경하면 동일한 라인의 f(x) 및 g(x) 값이 따라서 업데이트됩 LIC.

0.5

0.75

-0.2

• 현재 강조 표시된 x 셀 위의 x 셀에 값이 있는 경우, 🛨 또는 🖃을 누르면, 위 셀의 값과 동일한 값에 Step 값을 더한 값을 강조 표시된 셀에 자동으로 입력합니다. 마찬가지로, 🗖을 누르면, 위 셀의 값과 동일한 값에서 Step 값을 뺀 값을 자동으로 입력합니다. 동일한 라인의 f(x) 및 g(x) 값도 따라서 업데이트됩니다.

주의

- 위의 단계 4에서 三을 누른 후, g(x)에 아무 것도 입력하지 않고 단계 5로 진행하면, f(x)에 대해서만 수치표가 생성됩니다.
- •생성된 수치표의 최대 행 수는 설정 메뉴의 표 설정에 따라 다릅니다. 최대 45개 행이 "*f*(*x*)" 설정에 지원되는 반면, 30개 행이 "*f*(*x*),*g*(*x*)" 설정에 지원됩니다.
- 수치표 생성 연산은 변수 x의 내용이 변경되게 합니다.

중요: 이 모드에서 입력된 함수는 Table 모드에서 Input/Output 설정이 변경될 때마다 삭제됩니다.

벡터 계산

Vector 모드를 사용해서 2차원 및 3차원 벡터 계산을 실행합니다. 벡터 계산을 실행하려면, 아래의 예와 같이 특정한 벡터 변수(VctA, VctB, VctC, VctD)를 사용하십시오.

01: (1, 2) + (3, 4)

- 1. ₩₩ 을 누르고, Vector 모드 아이콘을 선택한 다음, ☰을 누릅니다.
- 2. 1(VctA) 2(2차원)을 누릅니다.
 - 그러면 VctA에 대해 2차원 벡터를 입력 하기 위한 벡터 편집기가 표시됩니다.

4 6

- 3. VctA의 요소를 입력합니다: 1**三**2**三**.
- 4. 다음 키 조작을 수행합니다: @TN 1 (Define Vector) 2 (VctB) 2 (2차원).
- - 그러면 계산 결과와 함께 VctAns (벡터 앤서 메모리) 화면이 표시됩니다.

벡터 앤서 메모리

Vector 모드에서 실행한 계산 결과가 벡터일 때에는 항상 결과와 함께 VctAns 화면이 표시됩니다. 그 결과는 또한 "VctAns"라고 명명된 변수에 할당됩니 다.

VctAns 변수는 아래에서 설명한 것과 같이 계산에서 사용할 수 있습니다.

- 계산에 VctAns 변수를 삽입하려면 다음 키 조작을 실행합니다: ☞ ● ● ● (VctAns).
- VctAns 화면이 표시되는 중에 다음 키 중의 하나를 누르면 계산 화면으로 자동으로 전환됩니다: Ⅰ, Ⅰ, Ⅰ, Ⅰ, Ⅰ.

백터 변수 데이터 할당 및 편집하기

벡터 변수에 새로운 데이터를 할당하려면

- 1. @ 1 (Define Vector)를 누른 후에, 표시되는 메뉴에서 데이터를 할당하 려는 벡터 변수를 선택합니다.
- 2. 표시되는 대화 상자에서, 2 또는 3을 눌러 벡터 차원을 지정합니다.
- 3. 표시되는 벡터 편집기를 사용해서 벡터의 요소를 입력합니다.

벡터 변수의 요소를 편집하려면

@TN 2 (Edit Vector)를 누른 후에, 표시되는 화면에서 편집하려는 벡터 변수 를 선택합니다.

- 벡터 변수(또는 VctAns) 내용을 복사하려면
 - 1. 벡터 편집기를 사용해서 복사하려는 벡터를 표시합니다.
 - VctAns 내용을 복사하려는 경우에는 다음을 실행해서 VctAns 화면을 표시합니다: ☞ ♥ ♥ ♥ (VctAns) ■.
 - 2. 500을 누른 후, 다음 키 조작 중의 하나를 실행하여 복사 대상을 지정합니 다: ๋━ (VctA), •••• (VctB), ₤ (VctC) 또는 510 (VctD).

● 그러면 복사 대상의 내용과 함께 벡터 편집기가 표시됩니다.
백터계산 예 <u>아래의 예는 VctA=(1, 2), VctB=(3, 4) 및 VctC=(2, -1, 2)를 사용합니다.</u> VctA ● VctB(벡터 내적)
AC VctA OPTN (2 (Dot Product) VctB = VctA · VctB 11
VctA × VctB (벡터 외적)
AC VctA × VctB =
VctC의 절대값을 구하려면
AC SHIFT ((Abs) VctC) = Abs(VctC) 3
AC 배키 ((Abs) VctC) = Abs(VctC) 3 VctA 및 VctB에 의해 생성된 각도를 소수 세 자리까지 구하려면(Fix 3). (Angle Unit: Degree) 배키 때에(SETUP) 3 (Number Format) 1 (Fix) 3
AC SHFT ((Abs) VctC) = Abs(VctC) 3 VctA 및 VctB에 의해 생성된 각도를 소수 세 자리까지 구하려면(Fix 3). (Angle Unit: Degree) SHFT MENU (SETUP) ③ (Number Format) ① (Fix) ③ AC OPTN ● ③ (Angle) VctA SHFT)(,) VctB) =

AC OPTN (Unit Vector) VctB) =

부등식 계산

아래의 절차를 사용하여 2차, 3차 또는 4차 부등식을 풀 수 있습니다.

1. ▥ 을 누르고, Inequality 모드 아이콘을 선택한 다음, ☰을 누릅니다.

0.6 0.8

1×

< x

- 2. 표시되는 대화 상자에서, 번호 키 (2 ~ ④)을 사용하여 부등식의 차수 를 지정합니다.
- 3. 표시되는 메뉴에서, 키 1 ~ ④을 사용하여 부등식 기호 종류와 방향을 선택합니다.
- 4. 표시되는 계수 편집기를 사용해서 계수값을 입력합니다.

 - 🚾을 누르면 모든 계수가 0으로 됩니다.
- 5. 모든 값이 원하는 대로 된 후에, 🖃을 누릅니다.
 - •해가 표시됩니다.
 - 해가 표시되는 중에 계수 편집기로 돌아가려면 🗚 을 누릅니다.

부등식 종류를 변경하려면: @ 1 (Polynomial)을 누르면 부등식 차수를 선 택할 수 있는 대화 상자가 표시됩니다. 부등식 차수를 변경하면 계수 편집기 의 모든 계수값이 0으로 변경됩니다.

Inequality 모드 계산 예

주의

•	Mathl/MathO 이외의 다른 것이 설정 메느	Π
	의 Input/Output 설정에서 선택된 경우, 1	화
	면과 같이 해가 표시됩니다.	

a <x<b,c<x< th=""></x<b,c<x<>
a=
b=

-1.263762616 0 0.2637626158

- 부등식의 해가 모든 숫자인 경우 "All Real Numbers"가 해 화면에 나타 납니다(예: x² ≧ 0).
- 부등식에 해가 없는 경우(예: x²< 0) "No Solution"이 해 화면에 나타납니 다.

비율 계산

Ratio 모드에서는 A, B, C 및 D 값을 알 수 있는 경우 비율 식 A : B = X : D (또 는 A : B = C : X)에서 X의 값을 결정할 수 있습니다. 다음은 Ratio를 사용하는 일반적인 절차를 보여줍니다.

- 1. ▥▥을 누르고, Ratio 모드 아이콘을 선택한 다음, ☰을 누릅니다.
- 2. 표시되는 메뉴에서, 1(A:B=X:D) 또는 2(A:B=C:X)를 선택합니다.
- 3. 표시되는 계수 편집기에서, 각각의 필수 값(A, B, C, D)에 최대 10자리를 입력합니다.
 - 예를 들어, 3 : 8 = X : 12를 X에 대해 풀려면, 단계 1에서 ①을 누른 다음, 계수 (A = 3, B = 8, D = 12)에 대해 다음을 입력합니다:
 3 8 12 ■.
 - 🗚 을 누르면 모든 계수가 1로 됩니다.
- 4. 모든 값이 원하는 대로 된 후에, 🔳을 누릅니다.

●해가 표시됩니다(X 값). ☰을 다시 누르면 계수 편집기로 돌아갑니다.

중요: 계수에 0이 입력된 중에 계산을 수행하면 Math ERROR가 발생합니다.

다음 비율에서 X를 계산하려면 1 : 2 = X : 10

 Image: Content of the second system
 Image: Co

<u>1</u> :	2 =	X:	10
		(X=)	5

비율 식 종류 변경하기

☞ 1 (Select Type)를 누른 다음, 표시되는 메뉴에서 원하는 비율 식 종류를 누릅니다.

분포 계산

아래 절차를 사용하여 일곱 종류의 다른 분포 계산을 수행할 수 있습니다.

- 1. 📖 을 누르고, Distribution 모드 아이콘을 선택한 다음, 🖃 을 누릅니다.
- 2. 표시되는 메뉴에서, 분포 계산 종류를 선택합니다.

선택할 계산 종류:	누를 키:
정규 확률 밀도	1 (Normal PD)
정규 누적 분포	2(Normal CD)
역 정규 누적 분포	3 (Inverse Normal)
이항 확률	(Binomial PD)
이항 누적 분포	♥ 1 (Binomial CD)
푸와송 확률	(Poisson PD)

푸와송 누적 분포

(Poisson CD)

- 계산 종류로 Normal PD, Normal CD 또는 Inverse Normal을 선택한 경 우, 이 절차의 단계 4로 이동하십시오. 다른 계산 종류의 경우에는, 단계 3으로 이동하십시오.
- 3. 표시되는 대화 상자에서, 데이터 (x) 입력 방법을 선택합니다.
 - 여러 x 데이터 항목을 동시에 입력하려면, ①(List)를 누릅니다. 단일 데이터 항목을 입력하려면, ②(Variable)을 누릅니다.
 - 위에서 1 (List)를 선택한 경우, 나타나는 목록 화면에서 x 데이터 항목 을 입력할 수 있습니다.
- 4. 변수의 값을 입력합니다.
 - •데이터 입력이 필요한 변수는 이 절차의 단계 2에서 선택한 계산 종류에 따라 다릅니다.
- 5. 모든 변수의 값을 입력한 후, 🖃을 누릅니다.
 - •계산 결과가 표시됩니다.
 - •계산 결과가 표시된 중에 🖃을 누르면 변수 입력 화면으로 돌아갑니 . ^{다.}

주의

- 이 절차의 3단계에서 "List" 이외의 다른 것을 선택한 경우, 계산 결과가 Ans 메모리에 저장됩니다.
- 분포 계산의 정확도는 6자리 유효 숫자까지입니다.

분포 계산 종류를 변경하려면: @TN 11(Select Type)를 누른 다음, 원하는 분 포 종류를 선택합니다.

입력을 허용하는 변수

값 입력을 허용하는 분포 계산 변수는 아래와 같습니다.

Normal PD: x, σ , μ

Normal CD: Lower, Upper, σ , μ

Inverse Normal: Area, σ, μ (테일 설정은 항상 왼쪽.)

Binomial PD, Binomial CD: x, N, p

Poisson PD, Poisson CD: x, λ

x: 데이터, σ: 표준 편차 (σ > 0), μ, λ: 평균, Lower: 하한 경계, Upper: 상한 경 계, Area: 확률 값 (0 ≦ Area ≦ 1), N: 시도 횟수, *p*: 성공 확률 (0 ≦ *p* ≦ 1)

목록 화면

각 변수에 대해 최대 45개의 데이터 샘플을 입력할 수 있습니다. 계산 결과도 또한 목록 화면에 표시됩니다.

(1) 분포 계산 종류
(2) 현재 커서 위치에서의 값
(3) 데이터 (x)
(4) 계산 결과 (P)

1 2 3 4	4 0.0	P 0286 0779 1385 1809	Binomial PD	I -(1) I -(2)
(3	3)	(4)		

데이터를 편집하려면: 편집하려는 데이터를 포함하는 셀로 커서를 이동시키 고 새로운 데이터를 입력한 후 三을 누릅니다. **데이터를 삭제하려면:** 삭제하려는 데이터로 커서를 이동한 다음 匝을 누릅 니다. **데이터를 삽입하려면:** 데이터를 삽입하려는 위치로 커서를 이동하고,

@TN 2 (Editor) 1 (Insert Row)를 누른 다음, 데이터를 입력합니다.
모든 데이터를 삭제하려면: @TN 2 (Editor) 2 (Delete All)을 누릅니다.

Distribution 모드 계산 예

x = 36, σ = 2, μ = 35일 때 정규 확률 밀도를 계산하려면 1. 아래의 키 조작을 수행하여 Normal PD를 선택합니다. ●TN 1 (Select Type) 1 (Normal PD)
● 그러면 변수 입력 화면이 표시됩니다.

Norm	al PD	
X	:0	
Ø	:1	
μ	:0	

- 2. x, σ 및 μ의 값을 입력합니다. 36 **三** 2 **三** 35 **三**
- 3. 🔳을 누릅니다.
 - •계산 결과가 표시됩니다.

- (*p*=) 0.1760326634

주의: 현재 표시된 해를 변수에 할당할 수 있습니다. 해가 표시되는 중에, 500을 누른 다음, 해를 할당하려는 변수의 이름에 해당하는 키를 누릅니다.

- N = 15 및 p = 0.6일 때 데이터 {10, 11, 12, 13}의 이항 확률을 계산하려면 1. 아래의 키 조작을 수행하여 Binomial PD를 선택합니다.
 - OPTN 1 (Select Type) 4 (Binomial PD)
 - 2. 네 개의 데이터 (x) 값을 입력하기 원하므로, 1 (List) 여기를 누릅니다.
 목록 화면이 표시됩니다.
 - 3. x의 값을 입력합니다. 10 = 11 = 12 = 13 =
 - 4. 모든 값을 입력한 후, 🖃을 누릅니다.
 - 그러면 변수 입력 화면이 표시됩니다.
 - 5. N 및 p의 값을 입력합니다. 15 = 0.6 =
 - 6. 🔳을 누릅니다.
 - 그러면 목록 화면으로 돌아가고, 각 *x* 값의 계산 결과가 P 열에 나타납니다.

글을 누르면 이 절차의 단계 4에 있는 변수 입력 화면으로 돌아갑니다.
 주이

- 위 절차의 단계 6에서 x 값을 변경하면 모든 계산 결과가 지워지고 2단계로 돌아갑니다. 이 경우, 다른 모든 x 값 (변경한 값을 제외)과 변수 N 및 p에 할당된 값은 동일하게 유지됩니다. 즉, 특정한 하나의 값만을 변경하도록 계산을 반복할 수 있습니다.
- 목록 화면에서, 한 셀의 값을 변수에 할당할 수 있습니다. 할당하려는 값을 포함하는 셀로 커서를 이동시키고, 500을 누른 다음, 원하는 변수 이름에 해당하는 키를 누릅니다.
- 입력한 값이 허용 범위를 벗어나는 경우에는 에러 메시지가 나타납니다. 해당 데이터의 입력한 값이 허용 범위를 벗어나는 경우에는, "ERROR" 가 결과 화면의 P 열에 나타납니다.

스프레드시트 사용하기

이 절에서 연산을 수행하려면, 먼저 Spreadsheet 모드로 들어가십시오. Spreadsheet 모드를 사용하면 45행 × 5열 (셀 (1) (2) A1 ~ E45) 스프레드시트를 사용하여 계산을 수행할 수 있습니다. (1) 행 번호 (1 ~ 45)

(1) 영 근포 (1 10) (2) 열 글자 (A ~ E)

- (3) 셀 커서: 현재 선택된 셀을 나타냅니다.
- (4) 편집 상자: 셀 커서가 현재 위치한 셀의 내 용을 표시합니다.

중요: Spreadsheet 모드를 종료하거나, 계산기를 끄거나, 🕅 을 누를 때마다, 스프레드시트의 모든 입력이 지워집니다.

셀 내용 입력 및 편집하기 각 셀에 상수 또는 식을 입력할 수 있습니다. 상수: 상수란 입력을 완료하자마자 값이 고정되는 수입니다. 상수는 숫자 값 이거나, 또는 그 앞에 등호 (=)가 없는 계산식 (예: 7+3, sin30, A1×2 등)일 수 있습니다.

식: 등호 (=)로 시작되는 식(예: =A1×2)은 쓰여진 대로 실행됩니다. 주의: 상수의 경우에는 각 셀에 최대 10 바이트를 입력할 수 있습니다. 식의 경우에는 각 셀에 최대 49 바이트를 입력할 수 있습니다. 셀에 식을 입력하려 면 실제 식 데이터의 바이트 수에 더하여 11 바이트가 더 필요합니다. 남은 입력 용량을 표시하려면: ☞ ④ (Free Space)를 누릅니다.

상수 및/또는 식을 셀에 입력하려면

예 1: 셀 A1, A2 및 A3에 각각 상수 7×5, 7×6 및 A2+7을 입력합니다. 그런 다 음, 다음 식을 셀 B1에 입력합니다: =A1+7.

- 1. 셀 커서를 셀 A1로 이동합니다.
- 2. 아래의 키 조작을 수행합니다.
- 7 × 5 = 7 × 6 = ₩₩ ↔ (A) 2 + 7 = 3. 셀 B1로 셀 커서를 이동시키고, 아래의 키 조작을 수행합니다.

[ALPHA] [CALC] (=) [ALPHA] (-) (A) [1] + 7 =

주의: 편집 상자의 식이 그대로 표시되어야 할지 또는 계산 결과 값으로 표시 되어야 할지 여부를 지정할 수 있습니다.

기존 셀 데이터를 편집하려면

- 1. 편집하려는 셀로 셀 커서를 이동한 다음, ITM 3 (Edit Cell)을 누릅니다.
 편집 상자의 셀 내용이 오른쪽 맞춤에서 왼쪽 맞춤으로 변경됩니다. 커 서가 편집 상자에 나타나고 그 내용을 편집할 수 있습니다.
- 2. 및 ●을 사용하여 커서를 셀 내용에서 이동하고, 필요에 따라 내용을 변경할 수 있습니다.
- 3. 편집을 완료하고 적용하려면, 🖃을 누릅니다.

Grab 명령을 사용하여 셀 참조 이름을 입력하려면

참조하려는 셀을 선택하고 입력하기 위해 키 조작을 사용하는 수동 참조 이름 (예: A1) 입력 대신에 Grab 명령이 사용될 수 있습니다.

예 2: 예 1에서 계속하여, 다음 식을 셀 B2에 입력합니다: =A2+7.

ALPHA CALC (=) OPTN 2 (Grab)

- 1. 셀 커서를 셀 B2로 이동합니다.
- 2. 아래의 키 조작을 수행합니다.

	Ĥ	В	С	D	
1	35	42			Γ
2	42	49			Γ
3	49				Г
4					Г
					•

셀 상대 및 절대 참조

상대 및 절대의 두 종류의 셀 참조가 있습니다.

상대 셀 참조: 식 =A1+7의 셀 참조 (A1)은 상대 참조입니다. 이 경우 식이 위 치하는 셀에 따라 참조가 변경됩니다. 예를 들어, 식 =A1+7이 처음에 셀 B1에 위치하고 있는 경우, 셀 C3에 복사하여 붙여넣으면 =B3+7이 셀 C3에 입력됩 니다. 복사하여 붙여넣는 조작은 식을 한 열(B ~ C)과 두 행(1 ~ 3)을 이동시 키기 때문에, 식의 A1 상대 셀 참조가 B3으로 변경됩니다. 복사하여 붙여넣는 조작으로 인해 상대 셀 참조 이름이 스프레드시트 셀 범위를 벗어나는 이름으 로 변경되며, 해당 열 글자 및/또는 행 번호가 물음표 (?)로 변경되고, 셀 데이 터로 "ERROR"가 표시됩니다.

=+7=

절대 셀 참조: 어느 위치에 붙여넣더라도 행 또는 열이나 셀 참조 이름의 행 및 열 부분이 동일하게 유지되도록 하려면, 절대 셀 참조 이름을 만들어야 합니 다. 절대 셀 참조를 만들려면, 열 이름 및/또는 행 번호 앞에 달러 기호(\$)를 넣 습니다. 다음과 같은 세 가지 절대 셀 참조를 사용할 수 있습니다: 절대 열과 상대 행 (\$A1), 상대 열과 절대 행 (A\$1) 또는 절대 행과 절대 열 (\$A\$1). 절대 셀 참조 기호(\$)를 입력하려면

식을 셀에 입력하는 중에, @ TN Ⅰ(\$)을 누릅니다.

스프레드시트 데이터를 잘라내고 붙여넣으려면

- 1. 데이터를 잘라내려는 셀로 커서를 이동한 다음. ☞ ♥ ♥ (Cut & Paste) 를 누릅니다.
 - 그러면 붙여넣기 대기 상태로 들어갑니다. 붙여넣기 대기 상태를 취소 하려면, AC을 누릅니다.
- 2. 잘라낸 데이터를 붙여넣으려는 셀로 커서를 이동한 다음, 🖃을 누릅니다.
 - •데이터를 붙여넣으면 잘라내기 조작을 수행했던 셀에서 데이터가 자동 으로 삭제되고, 붙여넣기 대기 상태가 자동으로 취소됩니다.

주의: 잘라내기 및 붙여넣기 조작에서는, 셀 참조가 상대이든 절대이든 간에 붙여넣을 때 셀 참조가 변경되지 않습니다.

스프레드시트 데이터를 복사하고 붙여넣으려면

- 1. 데이터를 복사내려는 셀로 커서를 이동한 다음, @M ♥ 2 (Copy & Paste)를 누릅니다.
 - 그러면 붙여넣기 대기 상태로 들어갑니다. 붙여넣기 대기 상태를 취소 하려면, 🚾을 누릅니다.
- 2. 복사한 데이터를 붙여넣으려는 셀로 커서를 이동한 다음, 🖃을 누릅니다.
 - 🗚을 누를 때까지는 붙여넣기 대기 상태가 유지되므로, 원하는 경우 복사한 데이터를 다른 셀에 붙여넣을 수 있습니다.

주의: 상대 참조인 식이 포함된 셀의 내용을 복사하는 경우에는, 내용을 붙여 넣을 셀의 위치에 따라 상대 참조가 변경됩니다.

지정된 셀에서 입력 데이터를 삭제하려면

삭제하려는 내용이 있는 셀로 셀 커서를 이동한 다음 📧 을 누릅니다. 스프레드시트에 있는 모든 셀의 내용을 삭제하려면

OPTN ▼ 3 (Delete All)을 누릅니다.

변수 사용하기(A, B, C, D, E, F, M, x, y)

🗊 을 사용하여 셀의 값을 변수에 할당할 수 있습니다. 또한 SMET STD (RECALL)을 사용하면 변수에 할당된 값을 셀에 입력할 수도 있습니 다.

Spreadsheet 모드 특수 명령 사용하기 Spreadsheet 모드에서는, 식 또는 상수 내에 아래의 명령을 사용할 수 있습니 다. 이들 명령은 [1977]을 누를 때 표시되는 메뉴에 있습니다.

지정된 셀 범위에서 최소값을 반환합니다. 규칙: Min(시작 셀:끝 셀)
지정된 셀 범위에서 최대값을 반환합니다. 규칙: Max(시작 셀:끝 셀)
지정된 셀 범위에서 평균값을 반환합니다. 규칙: Mean(시작 셀:끝 셀)
지정된 셀 범위에서 합계값을 반환합니다. 규칙: Sum(시작 셀:끝 셀)

예 3: 예 1에서 계속하여, 식 =Sum(A1:A3)을 입력합니다. 이 식은 셀 A1, A2 및 A3의 합계를 계산하여 셀 A4에 표시합니다.

1. 셀 커서를 셀 A4로 이동합니다.

2. =Sum(A1:A3)을 입력합니다.

 $\begin{array}{c} \text{ALPHA} \quad \textbf{CALC} (=) \quad \textbf{OPTN} \quad \textbf{\textcircled{4}} (Sum) \\ \text{ALPHA} \quad \textbf{(-)} (A) \quad \textbf{1} \quad \text{ALPHA} \quad \textbf{(-)} (A) \quad \textbf{3} \quad \textbf{)} \end{array}$

3. 🖃을 누릅니다.

	Ĥ	В	С	D	
1	35	42			
2	42				
3	49				
4					
=Sum(A1:A3)					

	Ĥ	в	С	D	
2	42				Γ
3	49				Г
4	126				Γ
5					Γ

동일 식 또는 상수를 여러 셀에 일괄 입력

이 절의 절차를 사용하면 동일 식 또는 상수를 일련의 특정 셀에 입력할 수 있 습니다. Fill Formula 명령을 사용하여 식을 일괄 입력하거나, Fill Value를 사용 하여 상수를 일괄 입력합니다.

주의: 입력 식 또는 상수에 상대 참조가 포함된 경우, 지정된 범위의 왼쪽 상단 셀에 따라 상대 참조가 입력됩니다. 입력 식 또는 상수에 절대 참조가 포함된 경우, 지정된 범위의 모든 셀에 절대 참조가 입력됩니다.

동일 식을 일련의 셀에 일괄 입력하려면

예 4: 예 1에서 계속하여, 셀의 값을 두 배로 한 다음 3을 빼는 식을 셀 B1, B2 및 B3에 일괄 입력합니다.

- 1. 셀 커서를 셀 B1로 이동합니다.
- 2. @M 1 (Fill Formula)을 누릅니다.
 - 그러면 Fill Formula 대화 상자가 표시됩니다.
- 3. "Form" 행에, 식 "=2A1-3"을 입력합니다: 2 ₩₩ ↔ (A) 1 → 3 =. • 시작 부분에 등호 (=)는 입력할 필요가 없습니다.
- 4. 강조 표시를 "Range" 라인으로 이동하고 일괄 입력 범위로 B1:B3을 지 정합니다.

Fill

Form

Formula =2A-3

=2A1-

Range :B1:B3

- 5. 입력을 적용하려면, 🖃을 누릅니다.
 - 그러면 =2A1-3이 셀 B1에, =2A2-3 이 셀 B2에, =2A3-3이 셀 B3에 입력 됩니다.

동일 상수를 일련의 셀에 일괄 입력하려면

예 5: 예 4에서 계속하여, 셀의 값을 세 배로 하는 값을 셀 C1, C2 및 C3에 일 괄 입력합니다.

- 1. 셀 커서를 셀 C1로 이동합니다.
- 2. [Fill Value)을 누릅니다.
 - 그러면 Fill Value 대화 상자가 표시됩니다.
- 3. "Value" 라인에, 상수 B1×3을 입력합니다: ₩₩ ••••(B) 1 ×3 =.
- 4. "Range" 라인의 강조 표시를 이동하고 일괄 입력 범위로 C1:C3을 지 정합니다.

재계산

Auto Calc은 설정 항목입니다. 스프레드시트의 내용에 따라서는, 자동 재계산 의 완료 시간이 오래 걸릴 수 있습니다. Auto Calc이 비활성화된 경우에는 (Off), 필요할 때 재계산을 수동으로 실행해야 합니다. 재계산을 수동으로 실행하려면: ☞ ④ ④ (Recalculate)을 누릅니다.

과학 상수

본 계산기는 47 종류의 과학 상수를 내장하고 있습니다. **예:** 과학 상수 c₀(진공중의 광속도)를 입력해서 그 값을 표시하려면

1. AC 500 7 (CONST)를 눌러 과학 상수 범 주의 메뉴를 표시합니다.

3 Co 6 Zo 9 t⊳

299792458

2:ჩ 5:ሥo 8:1⊳

1:h 4:εο 7:G

- 2. 1 (Universal)을 눌러 유니버설 범주에 있는 과학 상수의 메뉴를 표시합니다.
- 3. **③**(c₀) **三**을 누릅니다.

● 값은 CODATA (2010) 권장값을 기준으로 합니다.

단위 변환

단위 변환 명령을 사용하면 하나의 측정 단위를 다른 단위로 변환할 수 있습 니다.

예: 5cm를 인치로 변환하려면 (Linel/LineO)

1. 변환할 값을 입력하고 단위 변환 메뉴를 표시합니다.

- 변환식 데이터는 "NIST Special Publication 811 (2008)"을 기준으로 합니다.
- J▶cal 명령은 15°C에서의 값 변환을 수행합니다.

에러

계산중의 어떤 이유로 에러가 발생할 때마다 에러 메시지가 계산기에 표시됩 니다. 에러 메시지가 표시될 때에 ④ 또는 ⑤을 눌러서 계산 화면으로 돌아 갑니다. 에러가 발생한 곳에 커서가 위치해서 입력할 준비가 됩니다. 에러 메시지를 삭제하려면: 에러 메시지가 표시된 때에 AC을 눌러서 계산 화 면으로 되돌아갑니다. 이것은 또한 에러를 포함하는 계산도 삭제하는 것에 유 의해 주십시오.

에러 메시지

Math ERROR

- •실행중인 계산의 중간 결과 또는 최종 결과가 허용 계산 범위를 넘고 있다.
- 입력 데이터가 허용 입력 범위를 넘고 있다(특히, 함수를 사용하는 경우).
- 실행중인 계산식에 수학적 잘못(예를 들면, 0에 의한 제산 등)이 있다.
- → 입력값을 확인해서 자릿수를 줄이고 재실행한다.
- → 함수의 인수로서 독립 메모를 또는 변수를 사용하고 있는 경우에는 그
 메모리 또는 변수가 그 함수를 사용할 수 있는 범위 내가 되도록 한다.

Stack ERROR

- •실행중인 계산에서 수치 스택 또는 명령 스택의 용량을 넘었다.
- •실행하고 있는 계산이 행렬 또는 벡터 스택의 용량을 초과했다.
- → 스택의 용량을 넘지 않게 계산식을 간단하게 한다.
- → 계산을 2개 이상의 부분으로 나누어 실행한다.

Syntax ERROR

•실행중인 계산식에 잘못이 있다.

Argument ERROR

• 실행하고 있는 계산의 인수에 문제가 있다.

Dimension ERROR (Matrix 및 Vector 모드에만 해당)

- •계산에서 사용하려고 하는 행렬 또는 벡터의 차원을 지정하지 않고 입력했다.
- 그런 종류의 계산을 허용하지 않는 차원의 행렬 또는 벡터로 계산을 실행 하려 하고 있다.
- → 행렬 또는 벡터의 차원을 지정한 후 계산을 다시 실행한다.
- → 행렬 또는 벡터에 지정된 차원을 확인해서 계산과 호환하는지 확인한다.

Variable ERROR(SOLVE 함수에만 해당)

- 변수가 포함되지 않은 식 입력에 대해 SOLVE를 실행하려고 시도했다.
- → 변수가 포함된 식을 입력한다.

Cannot Solve (SOLVE 함수에만 해당)

- •계산기가 해를 구할 수 없었다.
- → 입력한 방정식에서 에러를 확인한다.
- → 예상되는 해에 가까운 해의 변수에 대한 값을 입력한 후 다시 시도한다.

Range ERROR

- 그 조건으로 인해 최대 허용 행 수를 초과하는 수치표를 Table 모드에서 생 성하려고 시도했다.
- Spreadsheet 모드에서의 일괄 입력 동안에, Range의 입력이 허용 범위를 벗어나거나 셀 이름이 존재하지 않는다.
- → Start 값, End 값, Step 값을 변경하여 표 계산 범위를 좁힌 후 다시 시도 한다.
- → Range의 경우, 다음 규칙을 사용하여 A1 ~ E45 범위 내의 셀 이름을 입 력하십시오: "A1:A1".

Time Out

- 현재의 미분 또는 적분 계산이 종료 조건이 충족되지 않은 상태에서 종료 되었다.
- → tol 값을 늘려 본다. 이것에 의해서 해의 정밀도가 감소하므로 주의한다.

Circular ERROR (Spreadsheet 모드에만 해당)

- 스프레드시트에 순환 참조가 있다(예: 셀 A1의 "=A1").
- → 셀 내용을 변경하여 순환 참조를 제거한다.

Memory ERROR (Spreadsheet 모드에만 해당)

• 허용 입력 용량(1,700바이트)을 초과하는 데이터를 입력하려고 시도 중이다.

- 연속 셀 참조의 체인(예: 셀 A2가 셀 A1에서 참조되고, 셀 A3가 셀 A2에서 참조되는 등)을 유발하는 데이터를 입력하려고 시도 중이다. 이런 종류의 입력은 메모리 용량(1,700 바이트)이 초과되지 않더라도 항상 이 에러를 유 발시킨다.
- 상대 셀 참조가 포함된 식이 복사되었기 때문에 또는 상대 셀 참조를 사용 하는 식이 일괄 입력되었기 때문에 메모리 용량이 초과했습니다.
- → 불필요한 데이터를 삭제하고 데이터를 다시 입력한다.
 → 연속 셀 참조의 체인을 유발하는 입력을 최소화한다.
- → 복사 중인 식이나 일괄 입력 중인 식을 줄이십시오.

계산기의 고장이라고 생각하기 전에...

이들 단계를 실행하기 전에는 중요한 데이터를 별도로 복사해야만 하는 것에 유의해 주십시오.

- 1. 계산식을 확인해서 에러를 포함하고 있지 않은지 확인해 주십시오.
- 실행하고자 하는 계산 종류에 대해서 올바른 모드를 사용하고 있는지 확 인해 주십시오.
- 3. 위의 단계로 문제를 해결할 수 없으면, 刚 키를 누르십시오.
 - 이것은 계산기에서 계산 기능이 올바르게 작동하고 있는지를 확인하는 일련의 절차를 실행합니다. 계산기에 이상이 발견되면, 자동으로 계산 모드를 초기화하고 메모리 내용을 삭제합니다.
- 4. 아래의 절차를 수행하여 계산 모드 및 설정(Contrast 설정은 제외)을 초기 상태로 되돌리십시오: ਗ਼ ᠑(RESET) ① (Setup Data) ☰ (Yes).

전지 교체

콘트라스트를 조정해도 표시가 흐릿한 경우, 계산기의 전원을 켠 직후에 표시 부가 점등되지 않은 경우에는 전지가 소모된 것입니다. 이런 경우에는 새 것 으로 전지를 교체해 주십시오.

중요: 전지를 교체하면 계산기의 모든 메모리 내용이 삭제됩니다.

- Imple AC (OFF)를 눌러서 계산기 의 전원을 끕니다.
 전원 교체 시에 우발적으로 전원을 켜지 않도록 하기 위 해서는 계산기의 앞쪽으로 하드 케이스를 밀어 주십시 오.
 그림과 같이, 덮개를 제거하고, 전지를 제거한 다음, 플러스(+)
- 전시들 세거안 다음, 들러스(+) 및 마이너스(-) 쪽이 올바로 향 하도록 새 전지를 끼우십시오. 3. 덮개를 닫습니다.

기술 정보

계산 범위 및 정밀도

계산 범위	±1×10 ⁻⁹⁹ ~±9.999999999×10 ⁹⁹ 또는0
내부 계산용 자릿수	15자리

정밀도

일반적으로 단일 계산에 대해서 10번째 자릿수에 서 ±1입니다. 지수 표시에 대한 정밀도는 최하위 의 수에서 ±1입니다. 연속 계산인 경우에는 에러 가 누적됩니다.

함수 계산 입력 범위 및 정밀도

함수	입력 범위		
	Degree	$0 \leq x < 9 \times 10^9$	
sin <i>x</i> cos <i>x</i>	Radian	$0 \leq x < 157079632.7$	
	Gradian	$0 \leq x < 1 \times 10^{10}$	
	Degree	x = (2n−1) × 90인 경우를 제외하고는 sinx와 같은 범위.	
tanx	Radian	x = (2n−1) × π/2인 경우를 제외하고는 sinx와 같은 범위.	
	Gradian	x = (2n−1) × 100인 경우를 제외하고는 sinx와 같은 범위.	
$\sin^{-1}x$, $\cos^{-1}x$	$0 \le x \le 1$		
tan ⁻¹ x	$0 \le x \le 9.999999999 \times 10^{99}$		
sinhx, coshx	$0 \le x \le 230.2585092$		
$\sinh^{-1}x$	$0 \le x \le 4.999999999 \times 10^{99}$		
cosh ⁻¹ x	$1 \le x \le 4.999999999 \times 10^{99}$		
tanhx	$0 \le x \le 9.999999999 \times 10^{99}$		
tanh ⁻¹ x	$0 \le x \le 9.999999999 \times 10^{-1}$		
logx, lnx	$0 \le x \le 9.999999999 \times 10^{99}$		
10 ^x	$-9.999999999 \times 10^{99} \le x \le 99.99999999$		
e ^x	$-9.999999999 \times 10^{99} \le x \le 230.2585092$		
\sqrt{x}	$0 \leq x < 1 \times 10^{100}$		
<i>x</i> ²	$ x < 1 \times 10^{50}$		
<i>x</i> ⁻¹	$ x < 1 \times 10^{100}$; $x \neq 0$		
$\sqrt[3]{x}$	$ x < 1 \times 10^{100}$		
x!	0 ≦ <i>x</i> ≦ 69 (<i>x</i> 는 정수)		
nPr	$0 \le n < 1 \times 10^{10}, 0 \le r \le n (n, r e 정 c)$ 1 \le \{n!/(n-r)!\} < 1 \times 10^{100}		

nCr	0 ≦ <i>n</i> < 1 × 10 ¹⁰ , 0 ≦ <i>r</i> ≦ <i>n</i> (<i>n</i> , <i>r</i> 은 정수) 1 ≦ <i>n</i> !/ <i>r</i> ! < 1 × 10 ¹⁰⁰ 또는 1 ≦ <i>n</i> !/(<i>n</i> - <i>r</i>)! < 1 × 10 ¹⁰⁰		
Pol(x, y)	$\begin{aligned} x , y &\leq 9.999999999 \times 10^{99} \\ \sqrt{x^2 + y^2} &\leq 9.9999999999 \times 10^{99} \end{aligned}$		
$\operatorname{Rec}(r, \theta)$	0 ≦ r ≦ 9.9999999999 × 10 ⁹⁹ θ: sinx와 같은 범위		
01 11	<i>a</i> , <i>b</i> , <i>c</i> < 1 × 10 ¹⁰⁰ ; 0 ≦ <i>b</i> , <i>c</i> 표시되는 초의 값은 소수 2째 자리에서 ±1의 에러를 가진 다.		
↔ , ,	x < 1 × 10 ¹⁰⁰ 십진수 ↔ 60진수 변환 0°0'0"≦ x ≦ 9999999°59'59"		
<i>x^v</i>	x > 0: -1 × 10 ¹⁰⁰ < ylogx < 100 x = 0: y > 0 x < 0: y = n, <u>m</u> (m, n은 정수) 단, -1 × 10 ¹⁰⁰ < ylog x < 100		
$\sqrt[x]{\mathcal{Y}}$	y > 0: x ≠ 0, -1 × 10 ¹⁰⁰ < 1/x logy < 100 y = 0: x > 0 y < 0: x = 2n+1, $\frac{2n+1}{m}$ (m ≠ 0; m, n은 정수) 단, -1 × 10 ¹⁰⁰ < 1/x log y < 100		
<i>a</i> ^{<i>b</i>} / _{<i>c</i>}	정수, 분자 및 분모의 합계가 10자릿수 이내(분리기호 포 함).		
$\operatorname{RanInt}\#(a, b)$	$a < b$; $ a $, $ b < 1 \times 10^{10}$; $b - a < 1 \times 10^{10}$		
 정밀도는 위의 "계산 범위 및 정밀도"에서 설명된 것과 기본적으로는 같습니다. x^y, ^x√y, ³√, x!, nPr, nCr 유형의 함수는 연속적인 내부 계산을 필요로 하며, 각 계산에서 발생하는 에러가 축적될 수 있습니다. 에러는 축적되며 함수의 단일점 및 변곡점 근처에서 커지는 경향이 있습니다. Mathl/MathO가 설정 메뉴의 Input/Output에서 선택된 경우, π 형식으로 표시될 수 있는 계산 결과의 범위는 x < 10⁶입니다. 그렇지만, 내부 계산 에 러로 인해서 일부 계산 결과를 π 형식으로 나타낼 수 없는 경우가 있다는 것에 유의해 주십시오. 이것은 또한 소수점 표시이어야 할 계산 결과를 π 형식으로 나타나게 할 수도 있습니다. 			
사양 전원: fx-570EX: AA, fx-991EX: 내경 대략적인 전지 수 2년(1일 1시건	A 사이즈 전지 R03 (UM-4) × 1 당 태양 전지; 버튼 전지 LR44 × 1 명: 안의 사용 조건)		

전력 소모: 0.0006 W (fx-570EX) 조작 온도: 0°C ~ 40°C

치수:

fx-570EX: 13.8 (높이) × 77 (너비) × 165.5 (깊이) mm fx-991EX: 11.1 (높이) × 77 (너비) × 165.5 (깊이) mm

대략적인 중량:

fx-570EX: 전지 포함 100g fx-991EX: 전지 포함 90g

제산 조작으로 생성된 분수 표시 결과를 소수점 표시로 변경하려면 어떻게 해 야 합니까?

→ 분수 계산 결과가 표시된 중에, 5 을 누릅니다. 계산 결과가 처음부터 소수점 값으로 나타나게 하려면, 설정 메뉴의 Input/Output 설정을 Mathl/DecimalO로 변경하십시오.

Ans 메모리와 독립 메모리 및 변수 메모리 간의 차이는 무엇입니까?

→ 이들 종류의 각 메모리는 단일값의 임시 보관을 위한 "용기"와 같은 작용을 합니다.

Ans메모리: 실행한 마지막 계산 결과를 저장합니다. 이 메모리를 사용해 서 하나의 계산 결과를 다음에 실행합니다.

독립 메모리: 이 메모리를 사용해서 승산 계산의 결과를 합계합니다.

변수 메모리: 이 메모리는 하나 이상의 계산에서 동일한 값을 여러 번 사용할 필요가 있을 때에 도움을 줍니다.

Statistics 모드 또는 Table 모드로부터 산술 계산을 수행할 수 있는 모드로 변환<u>하기 위</u>한 키 조작은 무엇입니까?

→ MENN ① (Calculate)을 누릅니다.

계산기를 초기 설정으로 되돌리려면 어떻게 해야 합니까?

함수 계산을 실행한 때에, 이전 CASIO계산기 모델과 완전히 다른 계산 결과 가 나오는 이유는 무엇입니까?

 → 자연수 텍스트북 표기 모델의 경우, 괄호를 사용하는 함수의 인수는 괄 호를 닫아 주어야 합니다. 인수 다음에 D을 눌러서 괄호를 닫지 않으면 원하지 않는 값이나 식이 인수의 일부로서 포함되게 됩니다.

예: (sin 30) + 15 (Angle Unit: Degree)

구형 (S-V.P.A.M.) 모델:

자연수 텍스트북 표기 모델:

(Linel/LineO)

sin 30**+** 15**=**

15.5

sin 30) + 15 = 15.5

아래와 같이))을 누르지 않으면 sin 45의 계산 결과가 다음과 같이 됩니 다.

sin 30 **+** 15 **≡** 0.7071067812

참조 시트

<u>과학 상수 💵 7 (CONST)</u>

1 : h	2:h	3 : C ₀
4 : ε ₀	5 : μ ₀	6 : Z ₀
7 :G	8 : I _P	9 : t _P
1 : μ _N	2 : μ _B	3 : e
4 : \$\$ _0	5 : G ₀	6 : K _J
7 : R _K		
1 : m _p	2 : m _n	3 : m _e
4 : m _μ	5 : a ₀	6 : α
7 : r _e	8 : λ _C	9 : γ _p
Α : λ _{Cp}	Β : λ _{Cn}	C:R∞
D : μ _p	E: μ_e	Ε : μ _n
Μ : μ _μ	\underline{x} : m _{τ}	
1 : u	2 : <i>F</i>	3 : N _A
4 : k	5 : V _m	6 : R
7 : C ₁	8 : C ₂	9 : σ
1 :g	2: atm	3: R _{K-90}
4 : K _{J-90}		
1 :t		
	1: h 4: ε_0 7: G 1: μ_N 4: ϕ_0 7: R_K 1: m_p 4: m_μ 7: r_e A: λ_{Cp} D: μ_p M: μ_μ 1: u 4: K 7: c_1 1: g 4: K_{J-90} 1: t	1: h 2: h 4: ε_0 5: μ_0 7: G 8: l_P 1: μ_N 2: μ_B 4: ϕ_0 5: G_0 7: R_K 1: m_p 1: m_p 2: m_n 4: m_μ 5: a_0 7: r_e 8: λ_C A: λ_{Cp} B: λ_{Cn} D: μ_p E: μ_e M: μ_μ X: m_τ 1: u 2: F 4: k 5: V_m 7: c_1 8: c_2 1: g 2: atm 4: K_{J-90} 1: t

단위 변환 5mm 8 (CONV)

1 (Length)	1 : in►cm	2 : cm►in
	3 : ft►m	4 : m►ft
	5 : yd►m	6 : m►yd
	7 : mile►km	8 : km⊾mile
	9: n mile►m	A : m▶n mile
	B ∶pc►km	C: km►pc
2(Area)	1 : acre► m^2	2 : m ² ►acre
3 (Volume)	1 : gal(US)►L	2: L►gal(US)
	∃: gal(UK)►L	4 : L►gal(UK)
(Mass)	1: oz►g	2 : g►oz
	3 : lb►kg	4 ∶ kg►lb
♥ 1 (Velocity)	1 : km/h►m/s	2 : m/s►km/h
(Pressure)	1 : atm►Pa	2 : Pa►atm
	3 ∶ mmHg►Pa	4 : Pa►mmHg
	5 : kgf/cm ² ►Pa	6 : Pa►kgf/cm ²
	7 : lbf/in²►kPa	8 : kPa►lbf/in ²
(Energy)	1: kgf • m►J	2: J►kgf • m
	3 : J►cal	4 : cal►J
(Power)	1: hp►kW	2: kW►hp
▼ 1 (Temperature)	1:°F►°C	2 : °C►°F

이 마크는 EU 국가에서만 적용됩니다.

Manufacturer: CASIO COMPUTER CO., LTD. 6-2, Hon-machi 1-chome Shibuya-ku, Tokyo 151-8543, Japan

Responsible within the European Union: CASIO EUROPE GmbH Casio-Platz 1 22848 Norderstedt, Germany

SA1412-A

Printed in China

© 2015 CASIO COMPUTER CO., LTD.